These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28228252)

  • 61. Projection-specific deficits in synaptic transmission in adult Sapap3-knockout mice.
    Hadjas LC; Schartner MM; Cand J; Creed MC; Pascoli V; Lüscher C; Simmler LD
    Neuropsychopharmacology; 2020 Nov; 45(12):2020-2029. PubMed ID: 32585679
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Increased Grik4 Gene Dosage Causes Imbalanced Circuit Output and Human Disease-Related Behaviors.
    Arora V; Pecoraro V; Aller MI; Román C; Paternain AV; Lerma J
    Cell Rep; 2018 Jun; 23(13):3827-3838. PubMed ID: 29949767
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A Deficiency of the Psychiatric Risk Gene DLG2/PSD-93 Causes Excitatory Synaptic Deficits in the Dorsolateral Striatum.
    Yoo T; Joshi S; Prajapati S; Cho YS; Kim J; Park PH; Bae YC; Kim E; Kim SY
    Front Mol Neurosci; 2022; 15():938590. PubMed ID: 35966008
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Corticostriatal Transmission Is Selectively Enhanced in Striatonigral Neurons with Postnatal Loss of Tsc1.
    Benthall KN; Ong SL; Bateup HS
    Cell Rep; 2018 Jun; 23(11):3197-3208. PubMed ID: 29898392
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Behavioral analysis of kainate receptor KO mice and the role of GluK3 subunit in anxiety.
    Iida I; Konno K; Natsume R; Abe M; Watanabe M; Sakimura K; Terunuma M
    Sci Rep; 2024 Feb; 14(1):4521. PubMed ID: 38402313
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Seizure protein 6 controls glycosylation and trafficking of kainate receptor subunits GluK2 and GluK3.
    Pigoni M; Hsia HE; Hartmann J; Rudan Njavro J; Shmueli MD; Müller SA; Güner G; Tüshaus J; Kuhn PH; Kumar R; Gao P; Tran ML; Ramazanov B; Blank B; Hipgrave Ederveen AL; Von Blume J; Mulle C; Gunnersen JM; Wuhrer M; Rammes G; Busche MA; Koeglsperger T; Lichtenthaler SF
    EMBO J; 2020 Aug; 39(15):e103457. PubMed ID: 32567721
    [TBL] [Abstract][Full Text] [Related]  

  • 67. An indirect route to repetitive actions.
    Lovinger DM
    J Clin Invest; 2017 May; 127(5):1618-1621. PubMed ID: 28414299
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Losing balance: Kainate receptors and psychiatric disorders comorbidities.
    Valbuena S; Lerma J
    Neuropharmacology; 2021 Jun; 191():108558. PubMed ID: 33862031
    [TBL] [Abstract][Full Text] [Related]  

  • 69. The Sensory Striatum Is Permanently Impaired by Transient Developmental Deprivation.
    Mowery TM; Penikis KB; Young SK; Ferrer CE; Kotak VC; Sanes DH
    Cell Rep; 2017 Jun; 19(12):2462-2468. PubMed ID: 28636935
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Optogenetic inhibition of indirect pathway neurons in the dorsomedial striatum reduces excessive grooming in Sapap3-knockout mice.
    Ramírez-Armenta KI; Alatriste-León H; Verma-Rodríguez AK; Llanos-Moreno A; Ramírez-Jarquín JO; Tecuapetla F
    Neuropsychopharmacology; 2022 Jan; 47(2):477-487. PubMed ID: 34417544
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Kainate receptor signaling in pain pathways.
    Bhangoo SK; Swanson GT
    Mol Pharmacol; 2013 Feb; 83(2):307-15. PubMed ID: 23095167
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Behavioral and cerebellar transmission deficits in mice lacking the autism-linked gene islet brain-2.
    Giza J; Urbanski MJ; Prestori F; Bandyopadhyay B; Yam A; Friedrich V; Kelley K; D'Angelo E; Goldfarb M
    J Neurosci; 2010 Nov; 30(44):14805-16. PubMed ID: 21048139
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The Effect of ASIC3 Knockout on Corticostriatal Circuit and Mouse Self-grooming Behavior.
    Wu WL; Cheng SJ; Lin SH; Chuang YC; Huang EY; Chen CC
    Front Cell Neurosci; 2019; 13():86. PubMed ID: 30930747
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ventral striatal islands of Calleja neurons control grooming in mice.
    Zhang YF; Vargas Cifuentes L; Wright KN; Bhattarai JP; Mohrhardt J; Fleck D; Janke E; Jiang C; Cranfill SL; Goldstein N; Schreck M; Moberly AH; Yu Y; Arenkiel BR; Betley JN; Luo W; Stegmaier J; Wesson DW; Spehr M; Fuccillo MV; Ma M
    Nat Neurosci; 2021 Dec; 24(12):1699-1710. PubMed ID: 34795450
    [TBL] [Abstract][Full Text] [Related]  

  • 75. A molecular switch for induction of long-term depression of corticostriatal transmission.
    Kheirbek MA
    J Neurosci; 2007 Sep; 27(37):9824-5. PubMed ID: 17855596
    [No Abstract]   [Full Text] [Related]  

  • 76. The emerging role of kainate receptor functional dysregulation in pain.
    Li H; Li J; Guan Y; Wang Y
    Mol Pain; 2021; 17():1744806921990944. PubMed ID: 33567997
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Age-dependent maintenance of motor control and corticostriatal innervation by death receptor 3.
    Twohig JP; Roberts MI; Gavalda N; Rees-Taylor EL; Giralt A; Adams D; Brooks SP; Bull MJ; Calder CJ; Cuff S; Yong AA; Alberch J; Davies A; Dunnett SB; Tolkovsky AM; Wang EC
    J Neurosci; 2010 Mar; 30(10):3782-92. PubMed ID: 20220013
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Development of prefrontal corticostriatal connectivity in mice.
    Mesías RE; Zaki Y; Guevara CA; Friedman LG; Hussein A; Therrien K; Magee AR; Tzavaras N; Valle PD; Baxter MG; Huntley GW; Benson DL
    bioRxiv; 2023 Mar; ():. PubMed ID: 36993639
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Neuron type-specific proteomics reveals distinct Shank3 proteoforms in iSPNs and dSPNs lead to striatal synaptopathy in Shank3B
    Wang YZ; Perez-Rosello T; Smukowski SN; Surmeier DJ; Savas JN
    Mol Psychiatry; 2024 Mar; ():. PubMed ID: 38486049
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Kainate receptors: on the dark side.
    Slaughter MM
    J Physiol; 2014 Apr; 592(7):1423. PubMed ID: 24692458
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.