BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28228261)

  • 1. Context-Dependent Effects of Amplified MAPK Signaling during Lung Adenocarcinoma Initiation and Progression.
    Cicchini M; Buza EL; Sagal KM; Gudiel AA; Durham AC; Feldser DM
    Cell Rep; 2017 Feb; 18(8):1958-1969. PubMed ID: 28228261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MEK1/2 inhibition elicits regression of autochthonous lung tumors induced by KRASG12D or BRAFV600E.
    Trejo CL; Juan J; Vicent S; Sweet-Cordero A; McMahon M
    Cancer Res; 2012 Jun; 72(12):3048-59. PubMed ID: 22511580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of tumorigenic cells in Kras(G12D)-induced lung adenocarcinoma.
    Cho HC; Lai CY; Shao LE; Yu J
    Cancer Res; 2011 Dec; 71(23):7250-8. PubMed ID: 22088965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutationally activated PIK3CA(H1047R) cooperates with BRAF(V600E) to promote lung cancer progression.
    Trejo CL; Green S; Marsh V; Collisson EA; Iezza G; Phillips WA; McMahon M
    Cancer Res; 2013 Nov; 73(21):6448-61. PubMed ID: 24019382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutations in BRAF and KRAS converge on activation of the mitogen-activated protein kinase pathway in lung cancer mouse models.
    Ji H; Wang Z; Perera SA; Li D; Liang MC; Zaghlul S; McNamara K; Chen L; Albert M; Sun Y; Al-Hashem R; Chirieac LR; Padera R; Bronson RT; Thomas RK; Garraway LA; Jänne PA; Johnson BE; Chin L; Wong KK
    Cancer Res; 2007 May; 67(10):4933-9. PubMed ID: 17510423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Braf kinase-inactive mutant induces lung adenocarcinoma.
    Nieto P; Ambrogio C; Esteban-Burgos L; Gómez-López G; Blasco MT; Yao Z; Marais R; Rosen N; Chiarle R; Pisano DG; Barbacid M; Santamaría D
    Nature; 2017 Aug; 548(7666):239-243. PubMed ID: 28783725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening for tumor suppressors: Loss of ephrin receptor A2 cooperates with oncogenic KRas in promoting lung adenocarcinoma.
    Yeddula N; Xia Y; Ke E; Beumer J; Verma IM
    Proc Natl Acad Sci U S A; 2015 Nov; 112(47):E6476-85. PubMed ID: 26542681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CD44 promotes Kras-dependent lung adenocarcinoma.
    Zhao P; Damerow MS; Stern P; Liu AH; Sweet-Cordero A; Siziopikou K; Neilson JR; Sharp PA; Cheng C
    Oncogene; 2013 Oct; 32(43):5186-90. PubMed ID: 23208496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ERBB network facilitates KRAS-driven lung tumorigenesis.
    Kruspig B; Monteverde T; Neidler S; Hock A; Kerr E; Nixon C; Clark W; Hedley A; Laing S; Coffelt SB; Le Quesne J; Dick C; Vousden KH; Martins CP; Murphy DJ
    Sci Transl Med; 2018 Jun; 10(446):. PubMed ID: 29925636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nrf2 prevents initiation but accelerates progression through the Kras signaling pathway during lung carcinogenesis.
    Satoh H; Moriguchi T; Takai J; Ebina M; Yamamoto M
    Cancer Res; 2013 Jul; 73(13):4158-68. PubMed ID: 23610445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-Raf is required for the initiation of lung cancer by K-Ras(G12D).
    Karreth FA; Frese KK; DeNicola GM; Baccarini M; Tuveson DA
    Cancer Discov; 2011 Jul; 1(2):128-36. PubMed ID: 22043453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotine promotes initiation and progression of KRAS-induced pancreatic cancer via Gata6-dependent dedifferentiation of acinar cells in mice.
    Hermann PC; Sancho P; Cañamero M; Martinelli P; Madriles F; Michl P; Gress T; de Pascual R; Gandia L; Guerra C; Barbacid M; Wagner M; Vieira CR; Aicher A; Real FX; Sainz B; Heeschen C
    Gastroenterology; 2014 Nov; 147(5):1119-33.e4. PubMed ID: 25127677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectors and potential targets selectively upregulated in human KRAS-mutant lung adenocarcinomas.
    Li J; Sordella R; Powers S
    Sci Rep; 2016 Jun; 6():27891. PubMed ID: 27301828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mouse tissues that undergo neoplastic progression after K-Ras activation are distinguished by nuclear translocation of phospho-Erk1/2 and robust tumor suppressor responses.
    Parikh N; Shuck RL; Nguyen TA; Herron A; Donehower LA
    Mol Cancer Res; 2012 Jun; 10(6):845-55. PubMed ID: 22532587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PIK3CA(H1047R) Accelerates and Enhances KRAS(G12D)-Driven Lung Tumorigenesis.
    Green S; Trejo CL; McMahon M
    Cancer Res; 2015 Dec; 75(24):5378-91. PubMed ID: 26567140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NOS2 enhances KRAS-induced lung carcinogenesis, inflammation and microRNA-21 expression.
    Okayama H; Saito M; Oue N; Weiss JM; Stauffer J; Takenoshita S; Wiltrout RH; Hussain SP; Harris CC
    Int J Cancer; 2013 Jan; 132(1):9-18. PubMed ID: 22618808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of Mutant
    Zhou X; Padanad MS; Evers BM; Smith B; Novaresi N; Suresh S; Richardson JA; Stein E; Zhu J; Hammer RE; O'Donnell KA
    Mol Cancer Res; 2019 Feb; 17(2):594-603. PubMed ID: 30409919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of MEK1/2-ERK1/2 signaling during NNK-induced lung carcinogenesis in female A/J mice.
    Yamakawa K; Yokohira M; Nakano Y; Kishi S; Kanie S; Imaida K
    Cancer Med; 2016 May; 5(5):903-13. PubMed ID: 26864819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thrombospondin-1 mediates oncogenic Ras-induced senescence in premalignant lung tumors.
    Baek KH; Bhang D; Zaslavsky A; Wang LC; Vachani A; Kim CF; Albelda SM; Evan GI; Ryeom S
    J Clin Invest; 2013 Oct; 123(10):4375-89. PubMed ID: 24018559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MAP4K4 is a novel MAPK/ERK pathway regulator required for lung adenocarcinoma maintenance.
    Gao X; Chen G; Gao C; Zhang DH; Kuan SF; Stabile LP; Liu G; Hu J
    Mol Oncol; 2017 Jun; 11(6):628-639. PubMed ID: 28306189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.