BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 28228264)

  • 1. LSD1 Controls Timely MyoD Expression via MyoD Core Enhancer Transcription.
    Scionti I; Hayashi S; Mouradian S; Girard E; Esteves de Lima J; Morel V; Simonet T; Wurmser M; Maire P; Ancelin K; Metzger E; Schüle R; Goillot E; Relaix F; Schaeffer L
    Cell Rep; 2017 Feb; 18(8):1996-2006. PubMed ID: 28228264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The core enhancer is essential for proper timing of MyoD activation in limb buds and branchial arches.
    Chen JC; Goldhamer DJ
    Dev Biol; 2004 Jan; 265(2):502-12. PubMed ID: 14732408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Six1 regulates MyoD expression in adult muscle progenitor cells.
    Liu Y; Chakroun I; Yang D; Horner E; Liang J; Aziz A; Chu A; De Repentigny Y; Dilworth FJ; Kothary R; Blais A
    PLoS One; 2013; 8(6):e67762. PubMed ID: 23840772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide association between Six4, MyoD, and the histone demethylase Utx during myogenesis.
    Chakroun I; Yang D; Girgis J; Gunasekharan A; Phenix H; Kærn M; Blais A
    FASEB J; 2015 Nov; 29(11):4738-55. PubMed ID: 26229056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PC4 coactivates MyoD by relieving the histone deacetylase 4-mediated inhibition of myocyte enhancer factor 2C.
    Micheli L; Leonardi L; Conti F; Buanne P; Canu N; Caruso M; Tirone F
    Mol Cell Biol; 2005 Mar; 25(6):2242-59. PubMed ID: 15743821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis.
    Havis E; Coumailleau P; Bonnet A; Bismuth K; Bonnin MA; Johnson R; Fan CM; Relaix F; Shi DL; Duprez D
    Development; 2012 Jun; 139(11):1910-20. PubMed ID: 22513369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors.
    Choi J; Jang H; Kim H; Kim ST; Cho EJ; Youn HD
    Biochem Biophys Res Commun; 2010 Oct; 401(3):327-32. PubMed ID: 20833138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation.
    Singh K; Cassano M; Planet E; Sebastian S; Jang SM; Sohi G; Faralli H; Choi J; Youn HD; Dilworth FJ; Trono D
    Genes Dev; 2015 Mar; 29(5):513-25. PubMed ID: 25737281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pitx2 defines alternate pathways acting through MyoD during limb and somitic myogenesis.
    L'honoré A; Ouimette JF; Lavertu-Jolin M; Drouin J
    Development; 2010 Nov; 137(22):3847-56. PubMed ID: 20978076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis.
    Mueller AC; Cichewicz MA; Dey BK; Layer R; Reon BJ; Gagan JR; Dutta A
    Mol Cell Biol; 2015 Feb; 35(3):498-513. PubMed ID: 25403490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two upstream enhancers collaborate to regulate the spatial patterning and timing of MyoD transcription during mouse development.
    Chen JC; Love CM; Goldhamer DJ
    Dev Dyn; 2001 Jul; 221(3):274-88. PubMed ID: 11458388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deltex2 represses MyoD expression and inhibits myogenic differentiation by acting as a negative regulator of Jmjd1c.
    Luo D; de Morree A; Boutet S; Quach N; Natu V; Rustagi A; Rando TA
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):E3071-E3080. PubMed ID: 28351977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteomic and functional analyses reveal the role of chromatin reader SFMBT1 in regulating epigenetic silencing and the myogenic gene program.
    Lin S; Shen H; Li JL; Tang S; Gu Y; Chen Z; Hu C; Rice JC; Lu J; Wu L
    J Biol Chem; 2013 Mar; 288(9):6238-47. PubMed ID: 23349461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Muscle-relevant genes marked by stable H3K4me2/3 profiles and enriched MyoD binding during myogenic differentiation.
    Cui H; Bansal V; Grunert M; Malecova B; Dall'Agnese A; Latella L; Gatto S; Ryan T; Schulz K; Chen W; Dorn C; Puri PL; Sperling SR
    PLoS One; 2017; 12(6):e0179464. PubMed ID: 28609469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipin1 is required for skeletal muscle development by regulating MEF2c and MyoD expression.
    Jama A; Huang D; Alshudukhi AA; Chrast R; Ren H
    J Physiol; 2019 Feb; 597(3):889-901. PubMed ID: 30511745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis.
    Lee H; Habas R; Abate-Shen C
    Science; 2004 Jun; 304(5677):1675-8. PubMed ID: 15192231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, Purification, and Biochemical Analysis of the LSD1/KDM1A Histone Demethylase.
    Laurent B; Shi Y
    Methods Enzymol; 2016; 573():241-59. PubMed ID: 27372756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The core binding factor CBF negatively regulates skeletal muscle terminal differentiation.
    Philipot O; Joliot V; Ait-Mohamed O; Pellentz C; Robin P; Fritsch L; Ait-Si-Ali S
    PLoS One; 2010 Feb; 5(2):e9425. PubMed ID: 20195544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis.
    Wang AH; Zare H; Mousavi K; Wang C; Moravec CE; Sirotkin HI; Ge K; Gutierrez-Cruz G; Sartorelli V
    EMBO J; 2013 Apr; 32(8):1075-86. PubMed ID: 23503590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tip60 regulates myoblast differentiation by enhancing the transcriptional activity of MyoD via their physical interactions.
    Kim JW; Jang SM; Kim CH; An JH; Kang EJ; Choi KH
    FEBS J; 2011 Nov; 278(22):4394-404. PubMed ID: 21936881
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.