BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

624 related articles for article (PubMed ID: 28228394)

  • 1. Update on Chlamydia trachomatis Vaccinology.
    de la Maza LM; Zhong G; Brunham RC
    Clin Vaccine Immunol; 2017 Apr; 24(4):. PubMed ID: 28228394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunity, immunopathology, and human vaccine development against sexually transmitted Chlamydia trachomatis.
    Rey-Ladino J; Ross AG; Cripps AW
    Hum Vaccin Immunother; 2014; 10(9):2664-73. PubMed ID: 25483666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a Chlamydia trachomatis vaccine: how close are we?
    Cochrane M; Armitage CW; O'Meara CP; Beagley KW
    Future Microbiol; 2010 Dec; 5(12):1833-56. PubMed ID: 21155665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis.
    Yu H; Karunakaran KP; Jiang X; Brunham RC
    Expert Rev Vaccines; 2016 Aug; 15(8):977-88. PubMed ID: 26938202
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    de la Maza LM; Darville TL; Pal S
    Expert Rev Vaccines; 2021 Apr; 20(4):421-435. PubMed ID: 33682583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Considerations for the rational design of a Chlamydia vaccine.
    Liang S; Bulir D; Kaushic C; Mahony J
    Hum Vaccin Immunother; 2017 Apr; 13(4):831-835. PubMed ID: 27835064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunization with the Chlamydia trachomatis major outer membrane protein, using adjuvants developed for human vaccines, can induce partial protection in a mouse model against a genital challenge.
    Pal S; Peterson EM; Rappuoli R; Ratti G; de la Maza LM
    Vaccine; 2006 Feb; 24(6):766-75. PubMed ID: 16199110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the nine polymorphic membrane proteins of Chlamydia trachomatis for their ability to induce protective immune responses in mice against a C. muridarum challenge.
    Pal S; Favaroni A; Tifrea DF; Hanisch PT; Luczak SET; Hegemann JH; de la Maza LM
    Vaccine; 2017 May; 35(19):2543-2549. PubMed ID: 28385608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a Chlamydia trachomatis vaccine for urogenital infections: novel tools and new strategies point to bright future prospects.
    Hafner LM; Timms P
    Expert Rev Vaccines; 2018 Jan; 17(1):57-69. PubMed ID: 29264970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A live and inactivated Chlamydia trachomatis mouse pneumonitis strain induces the maturation of dendritic cells that are phenotypically and immunologically distinct.
    Rey-Ladino J; Koochesfahani KM; Zaharik ML; Shen C; Brunham RC
    Infect Immun; 2005 Mar; 73(3):1568-77. PubMed ID: 15731055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine.
    Brunham RC; Rey-Ladino J
    Nat Rev Immunol; 2005 Feb; 5(2):149-61. PubMed ID: 15688042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of novel recombinant vaccine antigens for immunization against genital Chlamydia trachomatis.
    Coler RN; Bhatia A; Maisonneuve JF; Probst P; Barth B; Ovendale P; Fang H; Alderson M; Lobet Y; Cohen J; Mettens P; Reed SG
    FEMS Immunol Med Microbiol; 2009 Mar; 55(2):258-70. PubMed ID: 19281568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune response against a genital challenge.
    Pal S; Theodor I; Peterson EM; de la Maza LM
    Infect Immun; 2001 Oct; 69(10):6240-7. PubMed ID: 11553566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vaccines for Chlamydia infections of the female genital tract.
    Hafner LM; McNeilly C
    Future Microbiol; 2008 Feb; 3(1):67-77. PubMed ID: 18230035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria.
    Pal S; Peterson EM; de la Maza LM
    Infect Immun; 2005 Dec; 73(12):8153-60. PubMed ID: 16299310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine.
    Poston TB; Darville T
    Curr Top Microbiol Immunol; 2018; 412():217-237. PubMed ID: 27033698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Status of vaccine research and development of vaccines for Chlamydia trachomatis infection.
    Poston TB; Gottlieb SL; Darville T
    Vaccine; 2019 Nov; 37(50):7289-7294. PubMed ID: 28111145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Outer membrane proteins preferentially load MHC class II peptides: implications for a Chlamydia trachomatis T cell vaccine.
    Karunakaran KP; Yu H; Jiang X; Chan Q; Moon KM; Foster LJ; Brunham RC
    Vaccine; 2015 Apr; 33(18):2159-66. PubMed ID: 25738816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of a multi-epitope protein vaccine against herpes simplex virus, human papillomavirus and Chlamydia trachomatis as the main causes of sexually transmitted diseases.
    Dorosti H; Eskandari S; Zarei M; Nezafat N; Ghasemi Y
    Infect Genet Evol; 2021 Dec; 96():105136. PubMed ID: 34775078
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Shillova N; Howe SE; Hyseni B; Ridgell D; Fisher DJ; Konjufca V
    Infect Immun; 2020 Dec; 89(1):. PubMed ID: 33139380
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 32.