BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 28228402)

  • 21. Effect of the cGMP pathway on AQP2 expression and translocation: potential implications for nephrogenic diabetes insipidus.
    Boone M; Kortenoeven M; Robben JH; Deen PM
    Nephrol Dial Transplant; 2010 Jan; 25(1):48-54. PubMed ID: 19666909
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lithium-induced downregulation of aquaporin-2 water channel expression in rat kidney medulla.
    Marples D; Christensen S; Christensen EI; Ottosen PD; Nielsen S
    J Clin Invest; 1995 Apr; 95(4):1838-45. PubMed ID: 7535800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lithium-induced NDI: acetazolamide reduces polyuria but does not improve urine concentrating ability.
    de Groot T; Doornebal J; Christensen BM; Cockx S; Sinke AP; Baumgarten R; Bedford JJ; Walker RJ; Wetzels JFM; Deen PMT
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F669-F676. PubMed ID: 28615247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Changes of rat kidney AQP2 and Na,K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus.
    Laursen UH; Pihakaski-Maunsbach K; Kwon TH; Østergaard Jensen E; Nielsen S; Maunsbach AB
    Nephron Exp Nephrol; 2004; 97(1):e1-16. PubMed ID: 15153756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chloroquine attenuates lithium-induced NDI and proliferation of renal collecting duct cells.
    Du Y; Qian Y; Tang X; Guo Y; Chen S; Jiang M; Yang B; Cao W; Huang S; Zhang A; Jia Z; Zhang Y
    Am J Physiol Renal Physiol; 2020 May; 318(5):F1199-F1209. PubMed ID: 32249612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Treating lithium-induced nephrogenic diabetes insipidus with a COX-2 inhibitor improves polyuria via upregulation of AQP2 and NKCC2.
    Kim GH; Choi NW; Jung JY; Song JH; Lee CH; Kang CM; Knepper MA
    Am J Physiol Renal Physiol; 2008 Apr; 294(4):F702-9. PubMed ID: 18216147
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integrin linked kinase regulates the transcription of AQP2 by NFATC3.
    Hatem-Vaquero M; Griera M; Giermakowska W; Luengo A; Calleros L; Gonzalez Bosc LV; Rodríguez-Puyol D; Rodríguez-Puyol M; De Frutos S
    Biochim Biophys Acta Gene Regul Mech; 2017 Sep; 1860(9):922-935. PubMed ID: 28736155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Angiotensin II regulates V2 receptor and pAQP2 during ureteral obstruction.
    Jensen AM; Bae EH; Fenton RA; Nørregaard R; Nielsen S; Kim SW; Frøkiaer J
    Am J Physiol Renal Physiol; 2009 Jan; 296(1):F127-34. PubMed ID: 18971210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter.
    Sinke AP; Kortenoeven ML; de Groot T; Baumgarten R; Devuyst O; Wetzels JF; Loffing J; Deen PM
    Am J Physiol Renal Physiol; 2014 Mar; 306(5):F525-33. PubMed ID: 24352504
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of AQP2 water channels by protein kinase A: therapeutic strategies for congenital nephrogenic diabetes insipidus.
    Ando F
    Clin Exp Nephrol; 2021 Oct; 25(10):1051-1056. PubMed ID: 34224008
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic deletion of ADP-activated P2Y
    Zhang Y; Hansson KM; Liu T; Magnell K; Huang Y; Carlson NG; Kishore BK
    Acta Physiol (Oxf); 2019 Feb; 225(2):e13191. PubMed ID: 30257062
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Negative feedback from CaSR signaling to aquaporin-2 sensitizes vasopressin to extracellular Ca2.
    Ranieri M; Tamma G; Di Mise A; Russo A; Centrone M; Svelto M; Calamita G; Valenti G
    J Cell Sci; 2015 Jul; 128(13):2350-60. PubMed ID: 25977473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Absence of PKC-alpha attenuates lithium-induced nephrogenic diabetes insipidus.
    Sim JH; Himmel NJ; Redd SK; Pulous FE; Rogers RT; Black LN; Hong SM; von Bergen TN; Blount MA
    PLoS One; 2014; 9(7):e101753. PubMed ID: 25006961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lithium Chloride and GSK3 Inhibition Reduce Aquaporin-2 Expression in Primary Cultured Inner Medullary Collecting Duct Cells Due to Independent Mechanisms.
    Kaiser M; Edemir B
    Cells; 2020 Apr; 9(4):. PubMed ID: 32340354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lithium induces aerobic glycolysis and glutaminolysis in collecting duct principal cells.
    Alsady M; de Groot T; Kortenoeven MLA; Carmone C; Neijman K; Bekkenkamp-Grovenstein M; Engelke U; Wevers R; Baumgarten R; Korstanje R; Deen PMT
    Am J Physiol Renal Physiol; 2018 Feb; 314(2):F230-F239. PubMed ID: 29070571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of AQP2 water channels without vasopressin: therapeutic strategies for congenital nephrogenic diabetes insipidus.
    Ando F; Uchida S
    Clin Exp Nephrol; 2018 Jun; 22(3):501-507. PubMed ID: 29478202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sorting Nexin 27 Regulates the Lysosomal Degradation of Aquaporin-2 Protein in the Kidney Collecting Duct.
    Choi HJ; Jang HJ; Park E; Tingskov SJ; Nørregaard R; Jung HJ; Kwon TH
    Cells; 2020 May; 9(5):. PubMed ID: 32413996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Poria cocos on hypertonic stress-induced water channel expression and apoptosis in renal collecting duct cells.
    Lee SM; Lee YJ; Yoon JJ; Kang DG; Lee HS
    J Ethnopharmacol; 2012 May; 141(1):368-76. PubMed ID: 22414475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. RNA-Seq and protein mass spectrometry in microdissected kidney tubules reveal signaling processes initiating lithium-induced nephrogenic diabetes insipidus.
    Sung CC; Chen L; Limbutara K; Jung HJ; Gilmer GG; Yang CR; Lin SH; Khositseth S; Chou CL; Knepper MA
    Kidney Int; 2019 Aug; 96(2):363-377. PubMed ID: 31146973
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapamycin inhibition of mTORC1 reverses lithium-induced proliferation of renal collecting duct cells.
    Gao Y; Romero-Aleshire MJ; Cai Q; Price TJ; Brooks HL
    Am J Physiol Renal Physiol; 2013 Oct; 305(8):F1201-8. PubMed ID: 23884148
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.