BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 28228850)

  • 21. Is an acyl group at O-3 in glucosyl donors able to control α-stereoselectivity of glycosylation? The role of conformational mobility and the protecting group at O-6.
    Komarova BS; Orekhova MV; Tsvetkov YE; Nifantiev NE
    Carbohydr Res; 2014 Jan; 384():70-86. PubMed ID: 24368161
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity.
    van der Vorm S; van Hengst JMA; Bakker M; Overkleeft HS; van der Marel GA; Codée JDC
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8240-8244. PubMed ID: 29603532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycosyl Exchange of Unactivated Glycosidic Bonds: Suppressing or Embracing Side Reactivity in Catalytic Glycosylations.
    Martin JL; Sati GC; Malakar T; Hatt J; Zimmerman PM; Montgomery J
    J Org Chem; 2022 May; 87(9):5817-5826. PubMed ID: 35413188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stereoselective protecting-group-free synthesis of alkyl glycosides using dibenzyloxy triazine type glycosyl donors.
    Li G; Noguchi M; Ishihara M; Takagi Y; Nagaki M; Saito S; Saito M; Ye XS; Shoda SI
    Carbohydr Res; 2023 Dec; 534():108940. PubMed ID: 37738819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Ring Contraction of 2,3-Di- O-Silylated Thiopyranosides To Give Thiofuranosides under Mildly Acidic Conditions.
    Abronina PI; Malysheva NN; Litvinenko VV; Zinin AI; Kolotyrkina NG; Kononov LO
    Org Lett; 2018 Oct; 20(19):6051-6054. PubMed ID: 30216074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glycosylation with 2-Acetamido-2-deoxyglycosyl Donors at a Low Temperature: Scope of the Non-Oxazoline Method.
    Arihara R; Kakita K; Suzuki N; Nakamura S; Hashimoto S
    J Org Chem; 2015 May; 80(9):4259-77. PubMed ID: 25807142
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remote Electronic Effects by Ether Protecting Groups Fine-Tune Glycosyl Donor Reactivity.
    Heuckendorff M; Poulsen LT; Jensen HH
    J Org Chem; 2016 Jun; 81(12):4988-5006. PubMed ID: 27224456
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Regioselective silylation of N-phthaloylchitosan with TBDMS and TBDPS groups.
    Binette A; Gagnon J
    Biomacromolecules; 2007 Jun; 8(6):1812-5. PubMed ID: 17487971
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advances in Protecting Groups for Oligosaccharide Synthesis.
    Ghosh B; Kulkarni SS
    Chem Asian J; 2020 Feb; 15(4):450-462. PubMed ID: 31895493
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 1,3-syn-Diaxial Repulsion of Typical Protecting Groups Used in Carbohydrate Chemistry in 3-O-Substituted Derivatives of Isopropyl d-Idopyranosides.
    Komarova BS; Gerbst AG; Finogenova AM; Dmitrenok AS; Tsvetkov YE; Nifantiev NE
    J Org Chem; 2017 Sep; 82(17):8897-8908. PubMed ID: 28748699
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of silylene and silyl(silylene)metal complexes.
    Ogino H
    Chem Rec; 2002; 2(5):291-306. PubMed ID: 12369054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-promoted and stereospecific formation of
    Nielsen MM; Mała P; Baldursson EÞ; Pedersen CM
    Chem Sci; 2019 May; 10(20):5299-5307. PubMed ID: 31191886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SilE-R and SilE-S-DABB Proteins Catalying Enantiospecific Hydrolysis of Organosilyl Ethers.
    Pick LM; Oehme V; Hartmann J; Wenzlaff J; Tang Q; Grogan G; Ansorge-Schumacher MB
    Angew Chem Int Ed Engl; 2024 Jun; 63(25):e202404105. PubMed ID: 38630059
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of glycosyl donors: a supramer approach.
    Orlova AV; Malysheva NN; Panova MV; Podvalnyy NM; Medvedev MG; Kononov LO
    Beilstein J Org Chem; 2024; 20():181-192. PubMed ID: 38318458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gold(I)-Catalyzed Glycosylation with Glycosyl o-Alkynylbenzoates as Donors.
    Yu B
    Acc Chem Res; 2018 Feb; 51(2):507-516. PubMed ID: 29297680
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bromine-Promoted Glycosidation of Conformationally Superarmed Thioglycosides.
    Panza M; Civera M; Yasomanee JP; Belvisi L; Demchenko AV
    Chemistry; 2019 Sep; 25(51):11831-11836. PubMed ID: 31286579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reactivity, Selectivity, and Synthesis of 4-C-Silylated Glycosyl Donors and 4-Deoxy Analogues.
    Jaeger Pedersen M; Pedersen CM
    Angew Chem Int Ed Engl; 2021 Feb; 60(5):2689-2693. PubMed ID: 33025650
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regioselective silyl/acetate exchange of disaccharides yields advanced glycosyl donor and acceptor precursors.
    Hsieh HW; Schombs MW; Witschi MA; Gervay-Hague J
    J Org Chem; 2013 Oct; 78(19):9677-88. PubMed ID: 23980653
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of chemical glycosyl donors: does changing ring conformation influence selectivity/reactivity?
    Satoh H; Manabe S
    Chem Soc Rev; 2013 May; 42(10):4297-309. PubMed ID: 23364773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping the effect of configuration and protecting group pattern on glycosyl acceptor reactivity.
    van Hengst JMA; Hellemons RJC; Remmerswaal WA; van de Vrande KNA; Hansen T; van der Vorm S; Overkleeft HS; van der Marel GA; Codée JDC
    Chem Sci; 2023 Feb; 14(6):1532-1542. PubMed ID: 36794180
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.