These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 28229147)

  • 21. Substitution reactions of [Pt(terpy)X]2+ with some biologically relevant ligands. Synthesis and crystal structure of [Pt(terpy)(cyst-S)](ClO4)2.0.5H2O and [Pt(terpy)(guo-N7)](ClO4)2.0.5guo.1.5H2O.
    Bugarcic ZD; Heinemann FW; van Eldik R
    Dalton Trans; 2004 Jan; (2):279-86. PubMed ID: 15356724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2,3-Diphosphino-1,4-diphosphonium ions.
    Carpenter YY; Dyker CA; Burford N; Lumsden MD; Decken A
    J Am Chem Soc; 2008 Nov; 130(46):15732-41. PubMed ID: 18939832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lessons from isolable nickel(I) precursor complexes for small molecule activation.
    Yao S; Driess M
    Acc Chem Res; 2012 Feb; 45(2):276-87. PubMed ID: 21875073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formation of organoxenon dications in the reactions of xenon with dications derived from toluene.
    Zins EL; Milko P; Schröder D; Aysina J; Ascenzi D; Zabka J; Alcaraz C; Price SD; Roithová J
    Chemistry; 2011 Mar; 17(14):4012-20. PubMed ID: 21374745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactions of alpha-diimine ligands with the in situ generated "S(OTf)2" synthon.
    Martin CD; Ragogna PJ
    Inorg Chem; 2010 May; 49(9):4324-30. PubMed ID: 20380386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. New Insights into the Reactivity of Cisplatin with Free and Restrained Nucleophiles: Microsolvation Effects and Base Selectivity in Cisplatin-DNA Interactions.
    de Cózar A; Larrañaga O; Bickelhaupt FM; San Sebastián E; Ortega-Carrasco E; Maréchal JD; Lledós A; Cossío FP
    Chemphyschem; 2016 Dec; 17(23):3932-3947. PubMed ID: 27642713
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ruthenium-catalyzed propargylic substitution reactions of propargylic alcohols with oxygen-, nitrogen-, and phosphorus-centered nucleophiles.
    Nishibayashi Y; Milton MD; Inada Y; Yoshikawa M; Wakiji I; Hidai M; Uemura S
    Chemistry; 2005 Feb; 11(5):1433-51. PubMed ID: 15651018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Applications of Iridium-Catalyzed Asymmetric Allylic Substitution Reactions in Target-Oriented Synthesis.
    Qu J; Helmchen G
    Acc Chem Res; 2017 Oct; 50(10):2539-2555. PubMed ID: 28937739
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Negative ion gas-phase chemistry of arenes.
    Danikiewicz W; Zimnicka M
    Mass Spectrom Rev; 2016; 35(1):123-46. PubMed ID: 25851641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 1,2-diphosphaacenaphthene 1,2-dications: synthetic, stereochemical and computational study of the stabilising role of naphthalene-1,8-diyl backbone.
    Somisara DM; Bühl M; Lebl T; Richardson NV; Slawin AM; Woollins JD; Kilian P
    Chemistry; 2011 Feb; 17(9):2666-77. PubMed ID: 21274955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assessing the superelectrophilic dimension through sigma-complexation, SNAr and Diels-Alder reactivity.
    Buncel E; Terrier F
    Org Biomol Chem; 2010 May; 8(10):2285-308. PubMed ID: 20448887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the reactivity of microhydrated α-nucleophile in the anionic gas-phase S(N)2 reaction.
    Zhao WY; Yu J; Ren SJ; Wei XG; Qiu FZ; Li PH; Li H; Zhou YP; Yin CZ; Chen AP; Li H; Zhang L; Zhu J; Ren Y; Lau KC
    J Comput Chem; 2015 Apr; 36(11):844-52. PubMed ID: 25760852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleophilic substitution by grignard reagents on sulfur mustards.
    Converso A; Saaidi PL; Sharpless KB; Finn MG
    J Org Chem; 2004 Oct; 69(21):7336-9. PubMed ID: 15471488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ortho-selective nucleophilic aromatic substitution reactions of polyhaloanilines with potassium/sodium o-ethyl xanthate: a convenient access to halogenated 2(3H)-benzothiazolethiones.
    Zhu L; Zhang M
    J Org Chem; 2004 Oct; 69(21):7371-4. PubMed ID: 15471497
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Diverse Reactivity of an Electrophilic Phosphasilene towards Anionic Nucleophiles: Substitution or Metal-Amino Exchange.
    Willmes P; Junk L; Huch V; Yildiz CB; Scheschkewitz D
    Angew Chem Int Ed Engl; 2016 Aug; 55(36):10913-7. PubMed ID: 27509901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of phosphorus substituents on reactions of α-alkoxyphosphonium salts with nucleophiles.
    Goto A; Otake K; Kubo O; Sawama Y; Maegawa T; Fujioka H
    Chemistry; 2012 Sep; 18(36):11423-32. PubMed ID: 22829528
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigating the α-effect in gas-phase S(N)2 reactions of microsolvated anions.
    Thomsen DL; Reece JN; Nichols CM; Hammerum S; Bierbaum VM
    J Am Chem Soc; 2013 Oct; 135(41):15508-14. PubMed ID: 24047410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Trivalent boron nucleophile as a new tool in organic synthesis: reactivity and asymmetric induction.
    Cid J; Gulyás H; Carbó JJ; Fernández E
    Chem Soc Rev; 2012 May; 41(9):3558-70. PubMed ID: 22337581
    [TBL] [Abstract][Full Text] [Related]  

  • 39. S3S63 Terminal Ynamides: Synthesis, Coupling Reactions and Additions to Common Electrophiles.
    Cook AM; Wolf C
    Tetrahedron Lett; 2015 May; 56(19):2377-2392. PubMed ID: 26085692
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diverse Redoxome Reactivity Profiles of Carbon Nucleophiles.
    Gupta V; Yang J; Liebler DC; Carroll KS
    J Am Chem Soc; 2017 Apr; 139(15):5588-5595. PubMed ID: 28355876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.