These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 28229216)
21. Fate, toxicity and effect of triclocarban on the microbial community in wastewater treatment systems. Wang H; Yun H; Li M; Cui H; Ma X; Zhang Y; Pei X; Zhang L; Shi K; Li Z; Liang B; Wang A; Zhou J J Hazard Mater; 2022 Oct; 440():129796. PubMed ID: 36007371 [TBL] [Abstract][Full Text] [Related]
22. Measured physicochemical characteristics and biosolids-borne concentrations of the antimicrobial Triclocarban (TCC). Snyder EH; O'Connor GA; McAvoy DC Sci Total Environ; 2010 Jun; 408(13):2667-73. PubMed ID: 20385403 [TBL] [Abstract][Full Text] [Related]
23. Fate of Triclocarban, Triclosan and Methyltriclosan during wastewater and biosolids treatment processes. Lozano N; Rice CP; Ramirez M; Torrents A Water Res; 2013 Sep; 47(13):4519-27. PubMed ID: 23764601 [TBL] [Abstract][Full Text] [Related]
24. The fate and impact of TCC in nitrifying cultures. Bian Y; Wang D; Liu X; Yang Q; Liu Y; Wang Q; Ni BJ; Li H; Zhang Y Water Res; 2020 Jul; 178():115851. PubMed ID: 32371287 [TBL] [Abstract][Full Text] [Related]
25. Electrochemical activation of nitrate reduction to nitrogen by Ochrobactrum sp. G3-1 using a noncompartmented electrochemical bioreactor. Lee WJ; Park DH J Microbiol Biotechnol; 2009 Aug; 19(8):836-44. PubMed ID: 19734723 [TBL] [Abstract][Full Text] [Related]
26. Development of an innovative vertical submerged membrane bioreactor (VSMBR) for simultaneous removal of organic matter and nutrients. Chae SR; Kang ST; Watanabe Y; Shin HS Water Res; 2006 Jun; 40(11):2161-7. PubMed ID: 16720035 [TBL] [Abstract][Full Text] [Related]
27. Effect of triclocarban on hydrogen production from dark fermentation of waste activated sludge. Wang Y; Wang D; Chen F; Yang Q; Li Y; Li X; Zeng G Bioresour Technol; 2019 May; 279():307-316. PubMed ID: 30739014 [TBL] [Abstract][Full Text] [Related]
28. Enhanced nitrogen removal in a wastewater treatment process characterized by carbon source manipulation with biological adsorption and sludge hydrolysis. Liu H; Zhao F; Mao B; Wen X Bioresour Technol; 2012 Jun; 114():62-8. PubMed ID: 22487133 [TBL] [Abstract][Full Text] [Related]
29. Bioconcentration of triclosan, methyl-triclosan, and triclocarban in the plants and sediments of a constructed wetland. Zarate FM; Schulwitz SE; Stevens KJ; Venables BJ Chemosphere; 2012 Jul; 88(3):323-9. PubMed ID: 22483729 [TBL] [Abstract][Full Text] [Related]
30. Detection of triclocarban and two co-contaminating chlorocarbanilides in US aquatic environments using isotope dilution liquid chromatography tandem mass spectrometry. Sapkota A; Heidler J; Halden RU Environ Res; 2007 Jan; 103(1):21-9. PubMed ID: 16678153 [TBL] [Abstract][Full Text] [Related]
31. Biological nitrogen and phosphorus removal in UCT-type MBR process. Lee H; Han J; Yun Z Water Sci Technol; 2009; 59(11):2093-9. PubMed ID: 19494447 [TBL] [Abstract][Full Text] [Related]
32. Automatic control strategy for step feed anoxic/aerobic biological nitrogen removal process. Zhu GB; Peng YZ; Wu SY; Wang SY J Environ Sci (China); 2005; 17(3):457-9. PubMed ID: 16083124 [TBL] [Abstract][Full Text] [Related]
33. Effect of basic operating parameters on biological phosphorus removal in a continuous-flow anaerobic-anoxic activated sludge system. Kapagiannidis AG; Zafiriadis I; Aivasidis A Bioprocess Biosyst Eng; 2012 Mar; 35(3):371-82. PubMed ID: 21796365 [TBL] [Abstract][Full Text] [Related]
34. Performance and kinetics of triclocarban removal by entrapped Pseudomonas fluorescens strain MC46. Taweetanawanit P; Ratpukdi T; Siripattanakul-Ratpukdi S Bioresour Technol; 2019 Feb; 274():113-119. PubMed ID: 30502601 [TBL] [Abstract][Full Text] [Related]
35. Biological denitrifying phosphorus removal in SBR: effect of added nitrate concentration and sludge retention time. Merzouki M; Bernet N; Delgenès JP; Moletta R; Benlemlih M Water Sci Technol; 2001; 43(3):191-4. PubMed ID: 11381905 [TBL] [Abstract][Full Text] [Related]
36. A nitrate biosensor based methodology for monitoring anoxic activated sludge activity. Sin G; Vanrolleghem PA Water Sci Technol; 2004; 50(11):125-33. PubMed ID: 15685988 [TBL] [Abstract][Full Text] [Related]
37. Study of control strategy and simulation in anoxic-oxic nitrogen removal process. Peng YZ; Wang ZH; Whang SY J Environ Sci (China); 2005; 17(3):425-8. PubMed ID: 16083116 [TBL] [Abstract][Full Text] [Related]
38. Denitrification of a nitrate-rich synthetic wastewater using various wood-based media materials. Healy MG; Rodgers M; Mulqueen J J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(5):779-88. PubMed ID: 16702058 [TBL] [Abstract][Full Text] [Related]
39. Effect of carbon source and nitrate concentration on denitrifying phosphorus removal by DPB sludge. Wang YY; Peng YZ; Wang SY; Pan ML J Environ Sci (China); 2004; 16(4):548-52. PubMed ID: 15495953 [TBL] [Abstract][Full Text] [Related]
40. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]