BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 28229860)

  • 1. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle.
    Zhang X; Kampourakis T; Yan Z; Sevrieva I; Irving M; Sun YB
    Elife; 2017 Feb; 6():. PubMed ID: 28229860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Omecamtiv mercabil and blebbistatin modulate cardiac contractility by perturbing the regulatory state of the myosin filament.
    Kampourakis T; Zhang X; Sun YB; Irving M
    J Physiol; 2018 Jan; 596(1):31-46. PubMed ID: 29052230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myosin light chain phosphorylation enhances contraction of heart muscle via structural changes in both thick and thin filaments.
    Kampourakis T; Sun YB; Irving M
    Proc Natl Acad Sci U S A; 2016 May; 113(21):E3039-47. PubMed ID: 27162358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory mechanism of length-dependent activation in skinned porcine ventricular muscle: role of thin filament cooperative activation in the Frank-Starling relation.
    Terui T; Shimamoto Y; Yamane M; Kobirumaki F; Ohtsuki I; Ishiwata S; Kurihara S; Fukuda N
    J Gen Physiol; 2010 Oct; 136(4):469-82. PubMed ID: 20876361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulating Striated Muscle Contraction: Through Thick and Thin.
    Brunello E; Fusi L
    Annu Rev Physiol; 2024 Feb; 86():255-275. PubMed ID: 37931167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myosin binding protein-C activates thin filaments and inhibits thick filaments in heart muscle cells.
    Kampourakis T; Yan Z; Gautel M; Sun YB; Irving M
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18763-8. PubMed ID: 25512492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins.
    Ait-Mou Y; Hsu K; Farman GP; Kumar M; Greaser ML; Irving TC; de Tombe PP
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2306-11. PubMed ID: 26858417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myofilament length dependent activation.
    de Tombe PP; Mateja RD; Tachampa K; Ait Mou Y; Farman GP; Irving TC
    J Mol Cell Cardiol; 2010 May; 48(5):851-8. PubMed ID: 20053351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperative cross-bridge activation of thin filaments contributes to the Frank-Starling mechanism in cardiac muscle.
    Smith L; Tainter C; Regnier M; Martyn DA
    Biophys J; 2009 May; 96(9):3692-702. PubMed ID: 19413974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle.
    Poole KJ; Lorenz M; Evans G; Rosenbaum G; Pirani A; Craig R; Tobacman LS; Lehman W; Holmes KC
    J Struct Biol; 2006 Aug; 155(2):273-84. PubMed ID: 16793285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of skeletal muscle is controlled by a dual-filament mechano-sensing mechanism.
    Brunello E; Marcucci L; Irving M; Fusi L
    Proc Natl Acad Sci U S A; 2023 May; 120(22):e2302837120. PubMed ID: 37216507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Contractile Machines of the Heart.
    Morano I
    Adv Exp Med Biol; 2024; 1441():417-433. PubMed ID: 38884723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac thin filament regulation and the Frank-Starling mechanism.
    Kobirumaki-Shimozawa F; Inoue T; Shintani SA; Oyama K; Terui T; Minamisawa S; Ishiwata S; Fukuda N
    J Physiol Sci; 2014 Jul; 64(4):221-32. PubMed ID: 24788476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium, thin filaments, and the integrative biology of cardiac contractility.
    Kobayashi T; Solaro RJ
    Annu Rev Physiol; 2005; 67():39-67. PubMed ID: 15709952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac myosin filaments are directly regulated by calcium.
    Ma W; Nag S; Gong H; Qi L; Irving TC
    J Gen Physiol; 2022 Dec; 154(12):. PubMed ID: 36327149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium, cross-bridges, and the Frank-Starling relationship.
    Fuchs F; Smith SH
    News Physiol Sci; 2001 Feb; 16():5-10. PubMed ID: 11390938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin MgADP release rate decreases at longer sarcomere length to prolong myosin attachment time in skinned rat myocardium.
    Tanner BC; Breithaupt JJ; Awinda PO
    Am J Physiol Heart Circ Physiol; 2015 Dec; 309(12):H2087-97. PubMed ID: 26475586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Frank-Starling mechanism in vertebrate cardiac myocytes.
    Shiels HA; White E
    J Exp Biol; 2008 Jul; 211(Pt 13):2005-13. PubMed ID: 18552289
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Frank-Starling Law: a jigsaw of titin proportions.
    Sequeira V; van der Velden J
    Biophys Rev; 2017 Jun; 9(3):259-267. PubMed ID: 28639137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thick Filament Mechano-Sensing in Skeletal and Cardiac Muscles: A Common Mechanism Able to Adapt the Energetic Cost of the Contraction to the Task.
    Piazzesi G; Caremani M; Linari M; Reconditi M; Lombardi V
    Front Physiol; 2018; 9():736. PubMed ID: 29962967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.