These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 28229915)

  • 1. Regulated methionine oxidation by monooxygenases.
    Manta B; Gladyshev VN
    Free Radic Biol Med; 2017 Aug; 109():141-155. PubMed ID: 28229915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1.
    Kaya A; Lee BC; Gladyshev VN
    Antioxid Redox Signal; 2015 Oct; 23(10):814-22. PubMed ID: 26181576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential regulation of actin microfilaments by human MICAL proteins.
    Giridharan SS; Rohn JL; Naslavsky N; Caplan S
    J Cell Sci; 2012 Feb; 125(Pt 3):614-24. PubMed ID: 22331357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation.
    Lee BC; Péterfi Z; Hoffmann FW; Moore RE; Kaya A; Avanesov A; Tarrago L; Zhou Y; Weerapana E; Fomenko DE; Hoffmann PR; Gladyshev VN
    Mol Cell; 2013 Aug; 51(3):397-404. PubMed ID: 23911929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-function studies of MICAL, the unusual multidomain flavoenzyme involved in actin cytoskeleton dynamics.
    Vanoni MA
    Arch Biochem Biophys; 2017 Oct; 632():118-141. PubMed ID: 28602956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MICALs.
    Alto LT; Terman JR
    Curr Biol; 2018 May; 28(9):R538-R541. PubMed ID: 29738722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing F-actin Disassembly Induced by the Semaphorin-Signaling Component MICAL.
    Yoon J; Hung RJ; Terman JR
    Methods Mol Biol; 2017; 1493():119-128. PubMed ID: 27787846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A.
    Lim JC; Gruschus JM; Kim G; Berlett BS; Tjandra N; Levine RL
    J Biol Chem; 2012 Jul; 287(30):25596-601. PubMed ID: 22661719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic and spectroscopic characterization of the putative monooxygenase domain of human MICAL-1.
    Zucchini D; Caprini G; Pasterkamp RJ; Tedeschi G; Vanoni MA
    Arch Biochem Biophys; 2011 Nov; 515(1-2):1-13. PubMed ID: 21864500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity of the yeast cytoplasmic Hsp70 nucleotide-exchange factor Fes1 is regulated by reversible methionine oxidation.
    Nicklow EE; Sevier CS
    J Biol Chem; 2020 Jan; 295(2):552-569. PubMed ID: 31806703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corynebacterium diphtheriae methionine sulfoxide reductase a exploits a unique mycothiol redox relay mechanism.
    Tossounian MA; Pedre B; Wahni K; Erdogan H; Vertommen D; Van Molle I; Messens J
    J Biol Chem; 2015 May; 290(18):11365-75. PubMed ID: 25752606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drosophila methionine sulfoxide reductase A (MSRA) lacks methionine oxidase activity.
    Tarafdar S; Kim G; Levine RL
    Free Radic Biol Med; 2019 Feb; 131():154-161. PubMed ID: 30529269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actin stimulates reduction of the MICAL-2 monooxygenase domain.
    McDonald CA; Liu YY; Palfey BA
    Biochemistry; 2013 Sep; 52(35):6076-84. PubMed ID: 23927065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actin filaments-A target for redox regulation.
    Wilson C; Terman JR; González-Billault C; Ahmed G
    Cytoskeleton (Hoboken); 2016 Oct; 73(10):577-595. PubMed ID: 27309342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins.
    Liang X; Kaya A; Zhang Y; Le DT; Hua D; Gladyshev VN
    BMC Biochem; 2012 Oct; 13():21. PubMed ID: 23088625
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Tarrago L; Grosse S; Siponen MI; Lemaire D; Alonso B; Miotello G; Armengaud J; Arnoux P; Pignol D; Sabaty M
    Biochem J; 2018 Dec; 475(23):3779-3795. PubMed ID: 30389844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methionine oxidation in bacteria: A reversible post-translational modification.
    Vincent MS; Ezraty B
    Mol Microbiol; 2023 Feb; 119(2):143-150. PubMed ID: 36350090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracellular inhibitors, repellents, and semaphorin/plexin/MICAL-mediated actin filament disassembly.
    Hung RJ; Terman JR
    Cytoskeleton (Hoboken); 2011 Aug; 68(8):415-33. PubMed ID: 21800438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Signal-regulated oxidation of proteins via MICAL.
    Ortegón Salas C; Schneider K; Lillig CH; Gellert M
    Biochem Soc Trans; 2020 Apr; 48(2):613-620. PubMed ID: 32219383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of methionine/selenomethionine oxidation and methionine sulfoxide reductase function using methionine-rich proteins and antibodies against their oxidized forms.
    Le DT; Liang X; Fomenko DE; Raza AS; Chong CK; Carlson BA; Hatfield DL; Gladyshev VN
    Biochemistry; 2008 Jun; 47(25):6685-94. PubMed ID: 18505275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.