These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28229957)

  • 1. Origins and mechanisms of hysteresis in organometal halide perovskites.
    Li C; Guerrero A; Zhong Y; Huettner S
    J Phys Condens Matter; 2017 May; 29(19):193001. PubMed ID: 28229957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin of J-V Hysteresis in Perovskite Solar Cells.
    Chen B; Yang M; Priya S; Zhu K
    J Phys Chem Lett; 2016 Mar; 7(5):905-17. PubMed ID: 26886052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability.
    Yuan Y; Huang J
    Acc Chem Res; 2016 Feb; 49(2):286-93. PubMed ID: 26820627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells.
    Chen HW; Sakai N; Ikegami M; Miyasaka T
    J Phys Chem Lett; 2015 Jan; 6(1):164-9. PubMed ID: 26263106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Fullerene Passivation on the Charging and Discharging Behavior of Perovskite Solar Cells: Reduction of Bound Charges and Ion Accumulation.
    Shih YC; Wang L; Hsieh HC; Lin KF
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11722-11731. PubMed ID: 29557169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells.
    Chen B; Yang M; Zheng X; Wu C; Li W; Yan Y; Bisquert J; Garcia-Belmonte G; Zhu K; Priya S
    J Phys Chem Lett; 2015 Dec; 6(23):4693-700. PubMed ID: 26550850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing Anomalous Hysteresis in Perovskite Solar Cells by Suppressing the Interfacial Ferroelectric Order.
    Ma W; Zhang X; Xu Z; Guo H; Lu G; Meng S
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12275-12284. PubMed ID: 32079393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells.
    Jena AK; Chen HW; Kogo A; Sanehira Y; Ikegami M; Miyasaka T
    ACS Appl Mater Interfaces; 2015 May; 7(18):9817-23. PubMed ID: 25905438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells.
    Shao Y; Xiao Z; Bi C; Yuan Y; Huang J
    Nat Commun; 2014 Dec; 5():5784. PubMed ID: 25503258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling Anomalous Hysteresis in Perovskite Solar Cells.
    van Reenen S; Kemerink M; Snaith HJ
    J Phys Chem Lett; 2015 Oct; 6(19):3808-14. PubMed ID: 26722875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal Approach toward Hysteresis-Free Perovskite Solar Cell via Defect Engineering.
    Son DY; Kim SG; Seo JY; Lee SH; Shin H; Lee D; Park NG
    J Am Chem Soc; 2018 Jan; 140(4):1358-1364. PubMed ID: 29300468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteresis in hybrid perovskite indoor photovoltaics.
    Bulloch A; Wang S; Ghosh P; Jagadamma LK
    Philos Trans A Math Phys Eng Sci; 2022 Apr; 380(2221):20210144. PubMed ID: 35220768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction in the Interfacial Trap Density of Mechanochemically Synthesized MAPbI
    Prochowicz D; Yadav P; Saliba M; Saski M; Zakeeruddin SM; Lewiński J; Grätzel M
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28418-28425. PubMed ID: 28792199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies.
    Johnston MB; Herz LM
    Acc Chem Res; 2016 Jan; 49(1):146-54. PubMed ID: 26653572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameters Affecting I-V Hysteresis of CH3NH3PbI3 Perovskite Solar Cells: Effects of Perovskite Crystal Size and Mesoporous TiO2 Layer.
    Kim HS; Park NG
    J Phys Chem Lett; 2014 Sep; 5(17):2927-34. PubMed ID: 26278238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defect and Contact Passivation for Perovskite Solar Cells.
    Aydin E; De Bastiani M; De Wolf S
    Adv Mater; 2019 Jun; 31(25):e1900428. PubMed ID: 31062907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hysteresis Analysis of Hole-Transport-Material-Free Monolithic Perovskite Solar Cells with Carbon Counter Electrode by Current Density-Voltage and Impedance Spectra Measurements.
    Shah SAA; Sayyad MH; Sun J; Guo Z
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic behavior of organic-inorganic metal halide perovskite based metal-oxide-semiconductor capacitors.
    Wang Y; Zhang Y; Pang T; Xu J; Hu Z; Zhu Y; Tang X; Luan S; Jia R
    Phys Chem Chem Phys; 2017 May; 19(20):13002-13009. PubMed ID: 28480938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacitive Dark Currents, Hysteresis, and Electrode Polarization in Lead Halide Perovskite Solar Cells.
    Almora O; Zarazua I; Mas-Marza E; Mora-Sero I; Bisquert J; Garcia-Belmonte G
    J Phys Chem Lett; 2015 May; 6(9):1645-52. PubMed ID: 26263328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.