These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 28230096)
1. A novel approach to improve poly-γ-glutamic acid production by NADPH Regeneration in Bacillus licheniformis WX-02. Cai D; He P; Lu X; Zhu C; Zhu J; Zhan Y; Wang Q; Wen Z; Chen S Sci Rep; 2017 Feb; 7():43404. PubMed ID: 28230096 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of Bacitracin Production by NADPH Generation via Overexpressing Glucose-6-Phosphate Dehydrogenase Zwf in Bacillus licheniformis. Zhu S; Cai D; Liu Z; Zhang B; Li J; Chen S; Ma X Appl Biochem Biotechnol; 2019 Apr; 187(4):1502-1514. PubMed ID: 30267286 [TBL] [Abstract][Full Text] [Related]
3. Glutamate dehydrogenase (RocG) in Bacillus licheniformis WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-γ-glutamic acid production. Tian G; Wang Q; Wei X; Ma X; Chen S Enzyme Microb Technol; 2017 Apr; 99():9-15. PubMed ID: 28193334 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Production of Poly-γ-glutamic acid by Overexpression of the Global Anaerobic Regulator Fnr in Bacillus licheniformis WX-02. Cai D; Hu S; Chen Y; Liu L; Yang S; Ma X; Chen S Appl Biochem Biotechnol; 2018 Aug; 185(4):958-970. PubMed ID: 29388009 [TBL] [Abstract][Full Text] [Related]
5. Improvement of glycerol catabolism in Bacillus licheniformis for production of poly-γ-glutamic acid. Zhan Y; Zhu C; Sheng B; Cai D; Wang Q; Wen Z; Chen S Appl Microbiol Biotechnol; 2017 Oct; 101(19):7155-7164. PubMed ID: 28804802 [TBL] [Abstract][Full Text] [Related]
6. Enhanced production of poly-γ-glutamic acid by improving ATP supply in metabolically engineered Bacillus licheniformis. Cai D; Chen Y; He P; Wang S; Mo F; Li X; Wang Q; Nomura CT; Wen Z; Ma X; Chen S Biotechnol Bioeng; 2018 Oct; 115(10):2541-2553. PubMed ID: 29940069 [TBL] [Abstract][Full Text] [Related]
7. Enhanced synthesis of poly gamma glutamic acid by increasing the intracellular reactive oxygen species in the Bacillus licheniformis Δ1-pyrroline-5-carboxylate dehydrogenase gene ycgN-deficient strain. Li B; Cai D; Hu S; Zhu A; He Z; Chen S Appl Microbiol Biotechnol; 2018 Dec; 102(23):10127-10137. PubMed ID: 30229325 [TBL] [Abstract][Full Text] [Related]
8. Increasing the bioflocculant production and identifying the effect of overexpressing epsB on the synthesis of polysaccharide and γ-PGA in Bacillus licheniformis. Liu P; Chen Z; Yang L; Li Q; He N Microb Cell Fact; 2017 Sep; 16(1):163. PubMed ID: 28950882 [TBL] [Abstract][Full Text] [Related]
9. Metabolic Engineering of Central Carbon Metabolism of Bacillus licheniformis for Enhanced Production of Poly-γ-glutamic Acid. Li B; Cai D; Chen S Appl Biochem Biotechnol; 2021 Nov; 193(11):3540-3552. PubMed ID: 34312784 [TBL] [Abstract][Full Text] [Related]
10. Effect of glucose on poly-γ-glutamic acid metabolism in Bacillus licheniformis. Yu W; Chen Z; Ye H; Liu P; Li Z; Wang Y; Li Q; Yan S; Zhong CJ; He N Microb Cell Fact; 2017 Feb; 16(1):22. PubMed ID: 28178965 [TBL] [Abstract][Full Text] [Related]
11. Deciphering metabolic responses of biosurfactant lichenysin on biosynthesis of poly-γ-glutamic acid. Qiu Y; Wang Q; Zhu C; Yang Q; Zhou S; Xiang Z; Chen S Appl Microbiol Biotechnol; 2019 May; 103(10):4003-4015. PubMed ID: 30923871 [TBL] [Abstract][Full Text] [Related]
12. Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: enzymatic properties and efficient functions for acetoin/butanediol and L-valine biosynthesis. Huo Y; Zhan Y; Wang Q; Li S; Yang S; Nomura CT; Wang C; Chen S Bioprocess Biosyst Eng; 2018 Jan; 41(1):87-96. PubMed ID: 29026998 [TBL] [Abstract][Full Text] [Related]
13. Physiological and metabolic analysis of nitrate reduction on poly-gamma-glutamic acid synthesis in Bacillus licheniformis WX-02. Li X; Gou X; Long D; Ji Z; Hu L; Xu D; Liu J; Chen S Arch Microbiol; 2014 Nov; 196(11):791-9. PubMed ID: 25085616 [TBL] [Abstract][Full Text] [Related]
14. Enhancing poly-γ-glutamic acid production in Bacillus amyloliquefaciens by introducing the glutamate synthesis features from Corynebacterium glutamicum. Feng J; Quan Y; Gu Y; Liu F; Huang X; Shen H; Dang Y; Cao M; Gao W; Lu X; Wang Y; Song C; Wang S Microb Cell Fact; 2017 May; 16(1):88. PubMed ID: 28532451 [TBL] [Abstract][Full Text] [Related]
15. Knockout of pgdS and ggt gene changes poly-γ-glutamic acid production in Bacillus licheniformis RK14-46. Ojima Y; Kobayashi J; Doi T; Azuma M J Biotechnol; 2019 Oct; 304():57-62. PubMed ID: 31404564 [TBL] [Abstract][Full Text] [Related]
16. Engineering Corynebacterium glutamicum for the de novo biosynthesis of tailored poly-γ-glutamic acid. Xu G; Zha J; Cheng H; Ibrahim MHA; Yang F; Dalton H; Cao R; Zhu Y; Fang J; Chi K; Zheng P; Zhang X; Shi J; Xu Z; Gross RA; Koffas MAG Metab Eng; 2019 Dec; 56():39-49. PubMed ID: 31449877 [TBL] [Abstract][Full Text] [Related]
17. Biosynthesis of poly-γ-glutamic acid in Escherichia coli by heterologous expression of pgsBCAE operon from Bacillus. Liu CL; Dong HG; Xue K; Yang W; Liu P; Cai D; Liu X; Yang Y; Bai Z J Appl Microbiol; 2020 May; 128(5):1390-1399. PubMed ID: 31837088 [TBL] [Abstract][Full Text] [Related]
18. Construction and analysis of a genome-scale metabolic network for Bacillus licheniformis WX-02. Guo J; Zhang H; Wang C; Chang JW; Chen LL Res Microbiol; 2016 May; 167(4):282-289. PubMed ID: 26776566 [TBL] [Abstract][Full Text] [Related]
19. Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-gamma-glutamic acid. Wei X; Ji Z; Chen S Appl Biochem Biotechnol; 2010 Mar; 160(5):1332-40. PubMed ID: 19504190 [TBL] [Abstract][Full Text] [Related]