These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 28230096)
21. The main byproducts and metabolic flux profiling of γ-PGA-producing strain B. subtilis ZJU-7 under different pH values. Zhu F; Cai J; Wu X; Huang J; Huang L; Zhu J; Zheng Q; Cen P; Xu Z J Biotechnol; 2013 Mar; 164(1):67-74. PubMed ID: 23275182 [TBL] [Abstract][Full Text] [Related]
22. Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. Rao Y; Cai D; Wang H; Xu Y; Xiong S; Gao L; Xiong M; Wang Z; Chen S; Ma X J Biotechnol; 2020 Mar; 312():1-10. PubMed ID: 32119878 [TBL] [Abstract][Full Text] [Related]
23. Rational engineering of cofactor specificity of glutamate dehydrogenase for poly-γ-glutamic acid synthesis in Bacillus licheniformis. Yang F; Liu N; Chen Y; Wang S; Liu J; Zhao L; Ma X; Cai D; Chen S Enzyme Microb Technol; 2022 Apr; 155():109979. PubMed ID: 34973505 [TBL] [Abstract][Full Text] [Related]
24. Gamma-poly(glutamic acid) formation by Bacillus licheniformis 9945a: physiological and biochemical studies. Birrer GA; Cromwick AM; Gross RA Int J Biol Macromol; 1994 Oct; 16(5):265-75. PubMed ID: 7534473 [TBL] [Abstract][Full Text] [Related]
25. Improved poly-γ-glutamic acid production in Bacillus amyloliquefaciens by modular pathway engineering. Feng J; Gu Y; Quan Y; Cao M; Gao W; Zhang W; Wang S; Yang C; Song C Metab Eng; 2015 Nov; 32():106-115. PubMed ID: 26410449 [TBL] [Abstract][Full Text] [Related]
26. Production of optically pure 2,3-butanediol from Miscanthus floridulus hydrolysate using engineered Bacillus licheniformis strains. Gao Y; Huang H; Chen S; Qi G World J Microbiol Biotechnol; 2018 Apr; 34(5):66. PubMed ID: 29687256 [TBL] [Abstract][Full Text] [Related]
27. Enhanced poly-γ-glutamic acid synthesis in Corynebacterium glutamicum by reconstituting PgsBCA complex and fermentation optimization. Xu G; Wang J; Shen J; Zhu Y; Liu W; Chen Y; Zha J; Zhang X; Zhang X; Shi J; Koffas MAG; Xu Z Metab Eng; 2024 Jan; 81():238-248. PubMed ID: 38160746 [TBL] [Abstract][Full Text] [Related]
28. Rewiring glycerol metabolism for enhanced production of poly-γ-glutamic acid in Zhan Y; Sheng B; Wang H; Shi J; Cai D; Yi L; Yang S; Wen Z; Ma X; Chen S Biotechnol Biofuels; 2018; 11():306. PubMed ID: 30455735 [TBL] [Abstract][Full Text] [Related]
29. Prediction and characterization of protein-protein interaction network in Bacillus licheniformis WX-02. Han YC; Song JM; Wang L; Shu CC; Guo J; Chen LL Sci Rep; 2016 Jan; 6():19486. PubMed ID: 26782814 [TBL] [Abstract][Full Text] [Related]
30. Heterogenous expression of poly-gamma-glutamic acid synthetase complex gene of Bacillus licheniformis WBL-3. Wang N; Yang G; Che C; Liu Y Prikl Biokhim Mikrobiol; 2011; 47(4):424-8. PubMed ID: 21950116 [TBL] [Abstract][Full Text] [Related]
31. Expression of glr gene encoding glutamate racemase in Bacillus licheniformis WX-02 and its regulatory effects on synthesis of poly-γ-glutamic acid. Jiang F; Qi G; Ji Z; Zhang S; Liu J; Ma X; Chen S Biotechnol Lett; 2011 Sep; 33(9):1837-40. PubMed ID: 21544614 [TBL] [Abstract][Full Text] [Related]
32. Regulation of the NADH pool and NADH/NADPH ratio redistributes acetoin and 2,3-butanediol proportion in Bacillus subtilis. Bao T; Zhang X; Zhao X; Rao Z; Yang T; Yang S Biotechnol J; 2015 Aug; 10(8):1298-306. PubMed ID: 26129872 [TBL] [Abstract][Full Text] [Related]
33. Production and molecular weight variation of poly-γ-glutamic acid using a recombinant Bacillus subtilis with various Pgs-component ratios. Sawada K; Hagihara H; Takimura Y; Kataoka M Biosci Biotechnol Biochem; 2024 Sep; 88(10):1217-1224. PubMed ID: 38955395 [TBL] [Abstract][Full Text] [Related]
34. Isolation of a novel poly- Mahaboob Ali AA; Momin B; Ghogare P Prep Biochem Biotechnol; 2020; 50(5):445-452. PubMed ID: 31873055 [TBL] [Abstract][Full Text] [Related]
35. Metabolome analysis reveals the effect of carbon catabolite control on the poly(γ-glutamic acid) biosynthesis of Bacillus licheniformis ATCC 9945. Mitsunaga H; Meissner L; Palmen T; Bamba T; Büchs J; Fukusaki E J Biosci Bioeng; 2016 Apr; 121(4):413-9. PubMed ID: 26419706 [TBL] [Abstract][Full Text] [Related]
36. Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls. Kongklom N; Shi Z; Chisti Y; Sirisansaneeyakul S Appl Biochem Biotechnol; 2017 Jul; 182(3):990-999. PubMed ID: 28013429 [TBL] [Abstract][Full Text] [Related]
37. Characterization of a Regulator pgsR on Endogenous Plasmid p2Sip and Its Complementation for Poly(γ-glutamic acid) Accumulation in Bacillus amyloliquefaciens. Qiu Y; Zhu Y; Zhang Y; Sha Y; Xu Z; Li S; Feng X; Xu H J Agric Food Chem; 2019 Apr; 67(13):3711-3722. PubMed ID: 30866628 [TBL] [Abstract][Full Text] [Related]
38. Branched chain amino acids maintain the molecular weight of poly(γ-glutamic acid) of Bacillus licheniformis ATCC 9945 during the fermentation. Mitsunaga H; Meissner L; Büchs J; Fukusaki E J Biosci Bioeng; 2016 Oct; 122(4):400-5. PubMed ID: 27209178 [TBL] [Abstract][Full Text] [Related]
39. Metabolic studies of temperature control strategy on poly(γ-glutamic acid) production in a thermophilic strain Bacillus subtilis GXA-28. Zeng W; Chen G; Wang Q; Zheng S; Shu L; Liang Z Bioresour Technol; 2014 Mar; 155():104-10. PubMed ID: 24434700 [TBL] [Abstract][Full Text] [Related]