These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 28230096)
41. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Shi F; Li K; Huan X; Wang X Appl Biochem Biotechnol; 2013 Sep; 171(2):504-21. PubMed ID: 23868449 [TBL] [Abstract][Full Text] [Related]
42. Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis. Thanh TN; Jürgen B; Bauch M; Liebeke M; Lalk M; Ehrenreich A; Evers S; Maurer KH; Antelmann H; Ernst F; Homuth G; Hecker M; Schweder T Appl Microbiol Biotechnol; 2010 Aug; 87(6):2227-35. PubMed ID: 20524112 [TBL] [Abstract][Full Text] [Related]
43. Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA. Cao M; Geng W; Zhang W; Sun J; Wang S; Feng J; Zheng P; Jiang A; Song C Microb Biotechnol; 2013 Nov; 6(6):675-84. PubMed ID: 23919316 [TBL] [Abstract][Full Text] [Related]
44. Purification and characterization of gamma poly glutamic acid from newly Bacillus licheniformis NRC20. Tork SE; Aly MM; Alakilli SY; Al-Seeni MN Int J Biol Macromol; 2015 Mar; 74():382-91. PubMed ID: 25572721 [TBL] [Abstract][Full Text] [Related]
45. Improvement of poly(gamma-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Wu Q; Xu H; Shi N; Yao J; Li S; Ouyang P Appl Microbiol Biotechnol; 2008 Jun; 79(4):527-35. PubMed ID: 18443783 [TBL] [Abstract][Full Text] [Related]
46. Promoting cell growth for bio-chemicals production via boosting the synthesis of L/D-alanine and D-alanyl-D-alanine in Bacillus licheniformis. Zhang Z; He P; Hu S; Yu Y; Wang X; Ishaq AR; Chen S World J Microbiol Biotechnol; 2023 Mar; 39(5):115. PubMed ID: 36918439 [TBL] [Abstract][Full Text] [Related]
47. Metabolic engineering of Bacillus amyloliquefaciens LL3 for enhanced poly-γ-glutamic acid synthesis. Gao W; He Y; Zhang F; Zhao F; Huang C; Zhang Y; Zhao Q; Wang S; Yang C Microb Biotechnol; 2019 Sep; 12(5):932-945. PubMed ID: 31219230 [TBL] [Abstract][Full Text] [Related]
48. Heterologous synthesis of poly-γ-glutamic acid enhanced drought resistance in maize (Zea mays L.). Ma H; Li C; Xiao N; Liu J; Li P; Xu J; Yan J; Zhang S; Xia T Int J Biol Macromol; 2024 Jul; 273(Pt 2):133179. PubMed ID: 38880448 [TBL] [Abstract][Full Text] [Related]
49. Enhanced production of poly-γ-glutamic acid by Ebrahimzadeh Kouchesfahani M; Bahrami A; Babaeipour V Prep Biochem Biotechnol; 2022; 52(8):961-968. PubMed ID: 34974825 [TBL] [Abstract][Full Text] [Related]
50. Construct a synthetic Entner-Doudoroff pathway in Bacillus licheniformis for enhancing lichenysin production. Hu S; Zhao C; Zhang Y; Wang X; He P; Chen S World J Microbiol Biotechnol; 2023 Apr; 39(7):168. PubMed ID: 37088857 [TBL] [Abstract][Full Text] [Related]
51. Efficient Biosynthesis of Low-Molecular-Weight Poly-γ-glutamic Acid by Stable Overexpression of PgdS Hydrolase in Bacillus amyloliquefaciens NB. Sha Y; Zhang Y; Qiu Y; Xu Z; Li S; Feng X; Wang M; Xu H J Agric Food Chem; 2019 Jan; 67(1):282-290. PubMed ID: 30543111 [TBL] [Abstract][Full Text] [Related]
52. Effects of MreB paralogs on poly-γ-glutamic acid synthesis and cell morphology in Bacillus amyloliquefaciens. Gao W; Zhang Z; Feng J; Dang Y; Quan Y; Gu Y; Wang S; Song C FEMS Microbiol Lett; 2016 Sep; 363(17):. PubMed ID: 27481703 [TBL] [Abstract][Full Text] [Related]
53. Expression dynamics of the poly-γ-glutamic acid biosynthesis genes of Bacillus subtilis in response to glucose and glutamic acid-a pilot study. Tiwari DP; Chatterjee PM; Rotti H; Chand B; Raval R; Dubey AK FEMS Microbiol Lett; 2018 Nov; 365(22):. PubMed ID: 30295732 [TBL] [Abstract][Full Text] [Related]
54. Production of ultra-high molecular weight poly-γ-glutamic acid with Bacillus licheniformis P-104 and characterization of its flocculation properties. Zhao C; Zhang Y; Wei X; Hu Z; Zhu F; Xu L; Luo M; Liu H Appl Biochem Biotechnol; 2013 Jun; 170(3):562-72. PubMed ID: 23553109 [TBL] [Abstract][Full Text] [Related]
55. Proteomic profiling of Bacillus licheniformis reveals a stress response mechanism in the synthesis of extracellular polymeric flocculants. Yu W; Chen Z; Shen L; Wang Y; Li Q; Yan S; Zhong CJ; He N Biotechnol Bioeng; 2016 Apr; 113(4):797-806. PubMed ID: 26388297 [TBL] [Abstract][Full Text] [Related]
56. Engineering Bacillus licheniformis as industrial chassis for efficient bioproduction from starch. Zhu J; Liu M; Kang J; Wang S; Zha Z; Zhan Y; Wang Z; Li J; Cai D; Chen S Bioresour Technol; 2024 Aug; 406():131061. PubMed ID: 38960005 [TBL] [Abstract][Full Text] [Related]
57. Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15. Fang H; Xie X; Xu Q; Zhang C; Chen N Biotechnol Lett; 2013 Feb; 35(2):245-51. PubMed ID: 23070626 [TBL] [Abstract][Full Text] [Related]
58. Optimized production of poly (γ-glutamic acid) (γ-PGA) using Bacillus licheniformis and its application as cryoprotectant for probiotics. Xavier JR; Madhan Kumarr MM; Natarajan G; Ramana KV; Semwal AD Biotechnol Appl Biochem; 2020 Nov; 67(6):892-902. PubMed ID: 31880345 [TBL] [Abstract][Full Text] [Related]
59. Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in gamma-poly-glutamic acid synthesis. Ohsawa T; Tsukahara K; Ogura M Biosci Biotechnol Biochem; 2009 Sep; 73(9):2096-102. PubMed ID: 19734658 [TBL] [Abstract][Full Text] [Related]
60. Poly-γ-glutamic acid produced from Bacillus licheniformis CGMCC 2876 as a potential substitute for polyacrylamide in the sugarcane industry. Yan S; Yao H; Chen Z; Zeng S; Xi X; Wang Y; He N; Li Q Biotechnol Prog; 2015; 31(5):1287-94. PubMed ID: 26033934 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]