These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 28230188)

  • 1. 3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics.
    Sison M; Chakrabortty S; Extermann J; Nahas A; James Marchand P; Lopez A; Weil T; Lasser T
    Sci Rep; 2017 Feb; 7():43275. PubMed ID: 28230188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Airyscan super-resolution microscopy of mitochondrial morphology and dynamics in living tumor cells.
    Kolossov VL; Sivaguru M; Huff J; Luby K; Kanakaraju K; Gaskins HR
    Microsc Res Tech; 2018 Feb; 81(2):115-128. PubMed ID: 29131445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional tracking and temporal analysis of liposomal transport in live cells using bright-field imaging.
    Tsai FC; Tai LA; Wang YJ; Xiao JL; Hsu TH; Yang CS; Lee CH
    Microsc Res Tech; 2011 Jun; 74(6):531-8. PubMed ID: 20967833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast three-dimensional imaging of gold nanoparticles in living cells with photothermal optical lock-in Optical Coherence Microscopy.
    Pache C; Bocchio NL; Bouwens A; Villiger M; Berclaz C; Goulley J; Gibson MI; Santschi C; Lasser T
    Opt Express; 2012 Sep; 20(19):21385-99. PubMed ID: 23037262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel sample holder for 4D live cell imaging to study cellular dynamics in complex 3D tissue cultures.
    Septiadi D; Bourquin J; Durantie E; Petri-Fink A; Rothen-Rutishauser B
    Sci Rep; 2018 Jun; 8(1):9861. PubMed ID: 29959370
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoactivatable green fluorescent protein-based visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living cells.
    Karbowski M; Cleland MM; Roelofs BA
    Methods Enzymol; 2014; 547():57-73. PubMed ID: 25416352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and robust optical flow for time-lapse microscopy using super-voxels.
    Amat F; Myers EW; Keller PJ
    Bioinformatics; 2013 Feb; 29(3):373-80. PubMed ID: 23242263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D time-lapse analysis of Rab11/FIP5 complex: spatiotemporal dynamics during apical lumen formation.
    Mangan A; Prekeris R
    Methods Mol Biol; 2015; 1298():181-6. PubMed ID: 25800842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring succinoglycan production in single Sinorhizobium meliloti cells by Calcofluor white M2R staining and time-lapse microscopy.
    Jofré E; Liaudat JP; Medeot D; Becker A
    Carbohydr Polym; 2018 Feb; 181():918-922. PubMed ID: 29254054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using hydrogels in microscopy: A tutorial.
    Flood P; Page H; Reynaud EG
    Micron; 2016 May; 84():7-16. PubMed ID: 26921550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A versatile sample holder for single plane illumination microscopy.
    Desmaison A; Lorenzo C; Rouquette J; Ducommun B; Lobjois V
    J Microsc; 2013 Aug; 251(2):128-32. PubMed ID: 23691992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SYBR Gold dye enables preferential labelling of mitochondrial nucleoids and their time-lapse imaging by structured illumination microscopy.
    Jevtic V; Kindle P; Avilov SV
    PLoS One; 2018; 13(9):e0203956. PubMed ID: 30226899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-lapse imaging of membrane traffic in living cells.
    Snapp EL; Lajoie P
    Cold Spring Harb Protoc; 2011 Nov; 2011(11):1362-5. PubMed ID: 22046037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vitro and In Vivo Imaging of Fluorescent Aptamers.
    Théodorou I; Quang NN; Gombert K; Thézé B; Lelandais B; Ducongé F
    Methods Mol Biol; 2016; 1380():135-50. PubMed ID: 26552822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Modular and Affordable Time-Lapse Imaging and Incubation System Based on 3D-Printed Parts, a Smartphone, and Off-The-Shelf Electronics.
    Hernández Vera R; Schwan E; Fatsis-Kavalopoulos N; Kreuger J
    PLoS One; 2016; 11(12):e0167583. PubMed ID: 28002463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Global Method for Non-Rigid Registration of Cell Nuclei in Live Cell Time-Lapse Images.
    Gao Q; Rohr K
    IEEE Trans Med Imaging; 2019 Oct; 38(10):2259-2270. PubMed ID: 30835217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive prospective optical gating enables day-long 3D time-lapse imaging of the beating embryonic zebrafish heart.
    Taylor JM; Nelson CJ; Bruton FA; Kaveh A; Buckley C; Tucker CS; Rossi AG; Mullins JJ; Denvir MA
    Nat Commun; 2019 Nov; 10(1):5173. PubMed ID: 31729395
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CAST: An automated segmentation and tracking tool for the analysis of transcriptional kinetics from single-cell time-lapse recordings.
    Blanchoud S; Nicolas D; Zoller B; Tidin O; Naef F
    Methods; 2015 Sep; 85():3-11. PubMed ID: 25934263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution 3D imaging and quantification of gold nanoparticles in a whole cell using scanning transmission ion microscopy.
    Chen X; Chen CB; Udalagama CN; Ren M; Fong KE; Yung LY; Giorgia P; Bettiol AA; Watt F
    Biophys J; 2013 Apr; 104(7):1419-25. PubMed ID: 23561518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing mitochondrial morphology and dynamics using fluorescence wide-field microscopy and 3D image processing.
    Song W; Bossy B; Martin OJ; Hicks A; Lubitz S; Knott AB; Bossy-Wetzel E
    Methods; 2008 Dec; 46(4):295-303. PubMed ID: 18952177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.