These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28230193)

  • 1. The critical role of point defects in improving the specific capacitance of δ-MnO
    Gao P; Metz P; Hey T; Gong Y; Liu D; Edwards DD; Howe JY; Huang R; Misture ST
    Nat Commun; 2017 Feb; 8():14559. PubMed ID: 28230193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of Hierarchical α-MnO2 Nanowires@Ultrathin δ-MnO2 Nanosheets Core-Shell Nanostructure with Excellent Cycling Stability for High-Power Asymmetric Supercapacitor Electrodes.
    Ma Z; Shao G; Fan Y; Wang G; Song J; Shen D
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9050-8. PubMed ID: 27010242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries.
    Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G
    Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Charge storage performances and mechanisms of MnO
    Tanggarnjanavalukul C; Phattharasupakun N; Kongpatpanich K; Sawangphruk M
    Nanoscale; 2017 Sep; 9(36):13630-13639. PubMed ID: 28876006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MnO2 Nanosheets Grown on Nitrogen-Doped Hollow Carbon Shells as a High-Performance Electrode for Asymmetric Supercapacitors.
    Li L; Li R; Gai S; Ding S; He F; Zhang M; Yang P
    Chemistry; 2015 May; 21(19):7119-26. PubMed ID: 25801647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molybdenum diselenide/reduced graphene oxide based hybrid nanosheets for supercapacitor applications.
    Balasingam SK; Lee JS; Jun Y
    Dalton Trans; 2016 Jun; 45(23):9646-53. PubMed ID: 27220807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Pseudocapacitive Performance of α-MnO
    Jabeen N; Xia Q; Savilov SV; Aldoshin SM; Yu Y; Xia H
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33732-33740. PubMed ID: 27960432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advanced three-dimensional hierarchical porous
    Su X; Liang Z; He Q; Guo Y; Luo G; Han S; Yu L
    Nanotechnology; 2024 Apr; 35(26):. PubMed ID: 35045400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct Chemical Synthesis of MnO2 Nanowhiskers on Transition-Metal Carbide Surfaces for Supercapacitor Applications.
    Rakhi RB; Ahmed B; Anjum D; Alshareef HN
    ACS Appl Mater Interfaces; 2016 Jul; 8(29):18806-14. PubMed ID: 27377125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Performance MnO
    Sahoo D; Shakya J; Choudhury S; Roy SS; Devi L; Singh B; Ghosh S; Kaviraj B
    ACS Omega; 2022 May; 7(20):16895-16905. PubMed ID: 35647444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostrucutured MnO
    Ren P; Chen C; Yang X
    Sci Rep; 2022 Feb; 12(1):2088. PubMed ID: 35136101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrodeposition of spinel MnCo₂O₄ nanosheets for supercapacitor applications.
    Sahoo S; Naik KK; Rout CS
    Nanotechnology; 2015 Nov; 26(45):455401. PubMed ID: 26487175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ethylenediamine-assisted growth of multi-dimensional ZnS nanostructures and study of its charge transfer mechanism on supercapacitor electrode and photocatalytic performance.
    Bhushan M; Jha R; Sharma R; Bhardwaj R
    Nanotechnology; 2020 Mar; 31(23):235602. PubMed ID: 32053814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and Theoretical Investigation of the Effect of Oxygen Vacancies on the Electronic Structure and Pseudocapacitance of MnO
    Yan L; Shen C; Niu L; Liu MC; Lin J; Chen T; Gong Y; Li C; Liu X; Xu S
    ChemSusChem; 2019 Aug; 12(15):3571-3581. PubMed ID: 31127866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox Active Cation Intercalation/Deintercalation in Two-Dimensional Layered MnO
    Xiong P; Ma R; Sakai N; Bai X; Li S; Sasaki T
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6282-6291. PubMed ID: 28106370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hierarchical 3D NiFe
    Zhang X; Zhang Z; Sun S; Sun Q; Liu X
    Dalton Trans; 2018 Feb; 47(7):2266-2273. PubMed ID: 29363699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology-controlled MnO2-graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors.
    Wen ZQ; Li M; Li F; Zhu SJ; Liu XY; Zhang YX; Kumeria T; Losic D; Gao Y; Zhang W; He SX
    Dalton Trans; 2016 Jan; 45(3):936-42. PubMed ID: 26645931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical hollow MnO
    Xu K; Li S; Yang J; Hu J
    J Colloid Interface Sci; 2018 Mar; 513():448-454. PubMed ID: 29175738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO
    Ghosh K; Yue CY; Sk MM; Jena RK
    ACS Appl Mater Interfaces; 2017 May; 9(18):15350-15363. PubMed ID: 28414212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen vacancies refilling and potassium ions intercalation of δ-manganese dioxide with high structural stability toward 2.3 V high voltage asymmetric supercapacitors.
    Zhao J; Liu X; Liu P; Deng K; Lv X; Tian W; Wang C; Tan S; Ji J
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):1039-1048. PubMed ID: 36209567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.