BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

691 related articles for article (PubMed ID: 28230528)

  • 1. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.
    Miconi T
    Elife; 2017 Feb; 6():. PubMed ID: 28230528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A learning rule for the emergence of stable dynamics and timing in recurrent networks.
    Buonomano DV
    J Neurophysiol; 2005 Oct; 94(4):2275-83. PubMed ID: 16160088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Universal Computations with Spikes.
    Thalmeier D; Uhlmann M; Kappen HJ; Memmesheimer RM
    PLoS Comput Biol; 2016 Jun; 12(6):e1004895. PubMed ID: 27309381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experience-induced neural circuits that achieve high capacity.
    Feldman V; Valiant LG
    Neural Comput; 2009 Oct; 21(10):2715-54. PubMed ID: 19635015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning.
    Hoerzer GM; Legenstein R; Maass W
    Cereb Cortex; 2014 Mar; 24(3):677-90. PubMed ID: 23146969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning precisely timed spikes.
    Memmesheimer RM; Rubin R; Olveczky BP; Sompolinsky H
    Neuron; 2014 May; 82(4):925-38. PubMed ID: 24768299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaotic neural dynamics facilitate probabilistic computations through sampling.
    Terada Y; Toyoizumi T
    Proc Natl Acad Sci U S A; 2024 Apr; 121(18):e2312992121. PubMed ID: 38648479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning in neural networks by reinforcement of irregular spiking.
    Xie X; Seung HS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):041909. PubMed ID: 15169045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A model of operant learning based on chaotically varying synaptic strength.
    Wei T; Webb B
    Neural Netw; 2018 Dec; 108():114-127. PubMed ID: 30176514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task.
    Legenstein R; Chase SM; Schwartz AB; Maass W
    J Neurosci; 2010 Jun; 30(25):8400-10. PubMed ID: 20573887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance with subthreshold oscillatory drive organizes activity and optimizes learning in neural networks.
    Roach JP; Pidde A; Katz E; Wu J; Ognjanovski N; Aton SJ; Zochowski MR
    Proc Natl Acad Sci U S A; 2018 Mar; 115(13):E3017-E3025. PubMed ID: 29545273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recurrent neural networks that learn multi-step visual routines with reinforcement learning.
    Mollard S; Wacongne C; Bohte SM; Roelfsema PR
    PLoS Comput Biol; 2024 Apr; 20(4):e1012030. PubMed ID: 38683837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Which model to use for cortical spiking neurons?
    Izhikevich EM
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1063-70. PubMed ID: 15484883
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supervised Learning in Spiking Neural Networks for Precise Temporal Encoding.
    Gardner B; Grüning A
    PLoS One; 2016; 11(8):e0161335. PubMed ID: 27532262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target spike patterns enable efficient and biologically plausible learning for complex temporal tasks.
    Muratore P; Capone C; Paolucci PS
    PLoS One; 2021; 16(2):e0247014. PubMed ID: 33592040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reward-dependent learning in neuronal networks for planning and decision making.
    Dehaene S; Changeux JP
    Prog Brain Res; 2000; 126():217-29. PubMed ID: 11105649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.