These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 28230724)

  • 1. Alternative Splicing in Plant Genes: A Means of Regulating the Environmental Fitness of Plants.
    Shang X; Cao Y; Ma L
    Int J Mol Sci; 2017 Feb; 18(2):. PubMed ID: 28230724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light Regulation of Alternative Pre-mRNA Splicing in Plants.
    Zhang H; Lin C; Gu L
    Photochem Photobiol; 2017 Jan; 93(1):159-165. PubMed ID: 27925216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of alternative pre-mRNA splicing in temperature signaling.
    Capovilla G; Pajoro A; Immink RG; Schmid M
    Curr Opin Plant Biol; 2015 Oct; 27():97-103. PubMed ID: 26190743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SKIP regulates environmental fitness and floral transition by forming two distinct complexes in Arabidopsis.
    Li Y; Yang J; Shang X; Lv W; Xia C; Wang C; Feng J; Cao Y; He H; Li L; Ma L
    New Phytol; 2019 Oct; 224(1):321-335. PubMed ID: 31209881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative splicing in plants--coming of age.
    Syed NH; Kalyna M; Marquez Y; Barta A; Brown JW
    Trends Plant Sci; 2012 Oct; 17(10):616-23. PubMed ID: 22743067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the circadian clock through pre-mRNA splicing in Arabidopsis.
    Cui Z; Xu Q; Wang X
    J Exp Bot; 2014 May; 65(8):1973-80. PubMed ID: 24604736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Normal, novel or none: versatile regulation from alternative splicing.
    Liu L; Tang Z; Liu F; Mao F; Yujuan G; Wang Z; Zhao X
    Plant Signal Behav; 2021 Jul; 16(7):1917170. PubMed ID: 33882794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative splicing in plants: directing traffic at the crossroads of adaptation and environmental stress.
    Filichkin S; Priest HD; Megraw M; Mockler TC
    Curr Opin Plant Biol; 2015 Apr; 24():125-35. PubMed ID: 25835141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative Splicing Control of Abiotic Stress Responses.
    Laloum T; Martín G; Duque P
    Trends Plant Sci; 2018 Feb; 23(2):140-150. PubMed ID: 29074233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional and post-transcriptional control of the plant circadian gene regulatory network.
    Hernando CE; Romanowski A; Yanovsky MJ
    Biochim Biophys Acta Gene Regul Mech; 2017 Jan; 1860(1):84-94. PubMed ID: 27412912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromatin remodeling and alternative splicing: pre- and post-transcriptional regulation of the Arabidopsis circadian clock.
    Henriques R; Mas P
    Semin Cell Dev Biol; 2013 May; 24(5):399-406. PubMed ID: 23499867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-based regulation in the plant circadian clock.
    Staiger D; Green R
    Trends Plant Sci; 2011 Oct; 16(10):517-23. PubMed ID: 21782493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alternative splicing of transcription factors in plant responses to low temperature stress: mechanisms and functions.
    Seo PJ; Park MJ; Park CM
    Planta; 2013 Jun; 237(6):1415-24. PubMed ID: 23624977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ABA Mediates Plant Development and Abiotic Stress via Alternative Splicing.
    Yang X; Jia Z; Pu Q; Tian Y; Zhu F; Liu Y
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OsFKBP20-1b interacts with the splicing factor OsSR45 and participates in the environmental stress response at the post-transcriptional level in rice.
    Park HJ; You YN; Lee A; Jung H; Jo SH; Oh N; Kim HS; Lee HJ; Kim JK; Kim YS; Jung C; Cho HS
    Plant J; 2020 Jun; 102(5):992-1007. PubMed ID: 31925835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative polyadenylation and gene expression regulation in plants.
    Xing D; Li QQ
    Wiley Interdiscip Rev RNA; 2011; 2(3):445-58. PubMed ID: 21957029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternative splicing: enhancing ability to cope with stress via transcriptome plasticity.
    Mastrangelo AM; Marone D; Laidò G; De Leonardis AM; De Vita P
    Plant Sci; 2012 Apr; 185-186():40-9. PubMed ID: 22325865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of plant developmental processes by a novel splicing factor.
    Ali GS; Palusa SG; Golovkin M; Prasad J; Manley JL; Reddy AS
    PLoS One; 2007 May; 2(5):e471. PubMed ID: 17534421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layers of crosstalk between circadian regulation and environmental signalling in plants.
    Paajanen P; Lane de Barros Dantas L; Dodd AN
    Curr Biol; 2021 Apr; 31(8):R399-R413. PubMed ID: 33905701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array.
    Yoshimura K; Mori T; Yokoyama K; Koike Y; Tanabe N; Sato N; Takahashi H; Maruta T; Shigeoka S
    Plant Cell Physiol; 2011 Oct; 52(10):1786-805. PubMed ID: 21862516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.