BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 28230768)

  • 1. Bioinformatic Analysis Reveals Archaeal tRNA
    Mukai T; Reynolds NM; Crnković A; Söll D
    Life (Basel); 2017 Feb; 7(1):. PubMed ID: 28230768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of Pyrococcus horikoshii tryptophanyl-tRNA synthetase and structure-based phylogenetic analysis suggest an archaeal origin of tryptophanyl-tRNA synthetase.
    Dong X; Zhou M; Zhong C; Yang B; Shen N; Ding J
    Nucleic Acids Res; 2010 Mar; 38(4):1401-12. PubMed ID: 19942682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for the early divergence of tryptophanyl- and tyrosyl-tRNA synthetases.
    Brown JR; Robb FT; Weiss R; Doolittle WF
    J Mol Evol; 1997 Jul; 45(1):9-16. PubMed ID: 9211729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophanyl-tRNA synthetase crystal structure reveals an unexpected homology to tyrosyl-tRNA synthetase.
    Doublié S; Bricogne G; Gilmore C; Carter CW
    Structure; 1995 Jan; 3(1):17-31. PubMed ID: 7743129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ancestral Reconstruction of a Pre-LUCA Aminoacyl-tRNA Synthetase Ancestor Supports the Late Addition of Trp to the Genetic Code.
    Fournier GP; Alm EJ
    J Mol Evol; 2015 Apr; 80(3-4):171-85. PubMed ID: 25791872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Dependent Cysteine Biosynthesis in Bacteria and Archaea.
    Mukai T; Crnković A; Umehara T; Ivanova NN; Kyrpides NC; Söll D
    mBio; 2017 May; 8(3):. PubMed ID: 28487430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of three protozoan homologs of tryptophanyl-tRNA synthetase.
    Merritt EA; Arakaki TL; Gillespie R; Napuli AJ; Kim JE; Buckner FS; Van Voorhis WC; Verlinde CL; Fan E; Zucker F; Hol WG
    Mol Biochem Parasitol; 2011 May; 177(1):20-8. PubMed ID: 21255615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Species-specific differences in the operational RNA code for aminoacylation of tRNA(Trp).
    Xu F; Chen X; Xin L; Chen L; Jin Y; Wang D
    Nucleic Acids Res; 2001 Oct; 29(20):4125-33. PubMed ID: 11600701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recognition by tryptophanyl-tRNA synthetases of discriminator base on tRNATrp from three biological domains.
    Guo Q; Gong Q; Tong KL; Vestergaard B; Costa A; Desgres J; Wong M; Grosjean H; Zhu G; Wong JT; Xue H
    J Biol Chem; 2002 Apr; 277(16):14343-9. PubMed ID: 11834741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms.
    Tsunoda M; Kusakabe Y; Tanaka N; Ohno S; Nakamura M; Senda T; Moriguchi T; Asai N; Sekine M; Yokogawa T; Nishikawa K; Nakamura KT
    Nucleic Acids Res; 2007; 35(13):4289-300. PubMed ID: 17576676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Mini-Tyrosyl-tRNA Synthetase/Mini-Tryptophanyl-tRNA Synthetase on Angiogenesis in Rhesus Monkeys after Acute Myocardial Infarction.
    Zeng R; Wang M; You GY; Yue RZ; Chen YC; Zeng Z; Liu R; Qiang O; Zhang L
    Cardiovasc Ther; 2016 Feb; 34(1):4-12. PubMed ID: 26400816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quest for Ancestors of Eukaryal Cells Based on Phylogenetic Analyses of Aminoacyl-tRNA Synthetases.
    Furukawa R; Nakagawa M; Kuroyanagi T; Yokobori SI; Yamagishi A
    J Mol Evol; 2017 Jan; 84(1):51-66. PubMed ID: 27889804
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An orthogonalized platform for genetic code expansion in both bacteria and eukaryotes.
    Italia JS; Addy PS; Wrobel CJ; Crawford LA; Lajoie MJ; Zheng Y; Chatterjee A
    Nat Chem Biol; 2017 Apr; 13(4):446-450. PubMed ID: 28192410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of tyrosyl-tRNA synthetases from Archaea.
    Kuratani M; Sakai H; Takahashi M; Yanagisawa T; Kobayashi T; Murayama K; Chen L; Liu ZJ; Wang BC; Kuroishi C; Kuramitsu S; Terada T; Bessho Y; Shirouzu M; Sekine S; Yokoyama S
    J Mol Biol; 2006 Jan; 355(3):395-408. PubMed ID: 16325203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect Routes to Aminoacyl-tRNA: The Diversity of Prokaryotic Cysteine Encoding Systems.
    Mukai T; Amikura K; Fu X; Söll D; Crnković A
    Front Genet; 2021; 12():794509. PubMed ID: 35047015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion.
    Kobayashi T; Nureki O; Ishitani R; Yaremchuk A; Tukalo M; Cusack S; Sakamoto K; Yokoyama S
    Nat Struct Biol; 2003 Jun; 10(6):425-32. PubMed ID: 12754495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding.
    Sever S; Rogers K; Rogers MJ; Carter C; Söll D
    Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dispensable peptide from Acidithiobacillus ferrooxidans tryptophanyl-tRNA synthetase affects tRNA binding.
    Zúñiga R; Salazar J; Canales M; Orellana O
    FEBS Lett; 2002 Dec; 532(3):387-90. PubMed ID: 12482597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three G.C base pairs required for the efficient aminoacylation of tRNATrp by tryptophanyl-tRNA synthetase from Bacillus subtilis.
    Xu F; Jiang G; Li W; He X; Jin Y; Wang D
    Biochemistry; 2002 Jun; 41(25):8087-92. PubMed ID: 12069601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structure of tryptophanyl-tRNA synthetase from Giardia lamblia reveals divergence from eukaryotic homologs.
    Arakaki TL; Carter M; Napuli AJ; Verlinde CL; Fan E; Zucker F; Buckner FS; Van Voorhis WC; Hol WG; Merritt EA
    J Struct Biol; 2010 Aug; 171(2):238-43. PubMed ID: 20438846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.