These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 2823078)

  • 41. Cloning and characteristics of a positive regulatory gene, THI2 (PHO6), of thiamin biosynthesis in Saccharomyces cerevisiae.
    Nishimura H; Kawasaki Y; Kaneko Y; Nosaka K; Iwashima A
    FEBS Lett; 1992 Feb; 297(1-2):155-8. PubMed ID: 1551422
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Isolation and preliminary characterization of the GAL4 gene, a positive regulator of transcription in yeast.
    Laughon A; Gesteland RF
    Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6827-31. PubMed ID: 6294656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Depression of Saccharomyces cerevisiae invasive growth on non-glucose carbon sources requires the Snf1 kinase.
    Palecek SP; Parikh AS; Huh JH; Kron SJ
    Mol Microbiol; 2002 Jul; 45(2):453-69. PubMed ID: 12123456
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Altered transcriptional patterns affecting several metabolic pathways in strains of Salmonella typhimurium which overexpress the fructose regulon.
    Chin AM; Feldheim DA; Saier MH
    J Bacteriol; 1989 May; 171(5):2424-34. PubMed ID: 2496106
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon.
    Johnston SA; Hopper JE
    Proc Natl Acad Sci U S A; 1982 Nov; 79(22):6971-5. PubMed ID: 6294669
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The ICL1 gene from Saccharomyces cerevisiae.
    Fernández E; Moreno F; Rodicio R
    Eur J Biochem; 1992 Mar; 204(3):983-90. PubMed ID: 1551398
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cis-dominant regulatory mutations affecting the formation of glucose-repressible alcohol dehydrogenase (ADHII) in Saccharomyces cerevisiae.
    Ciriacy M
    Mol Gen Genet; 1976 Jun; 145(3):327-33. PubMed ID: 781520
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression of yeast cytochrome c1 is controlled at the transcriptional level by glucose, oxygen and haem.
    Oechsner U; Hermann H; Zollner A; Haid A; Bandlow W
    Mol Gen Genet; 1992 Apr; 232(3):447-59. PubMed ID: 1316998
    [TBL] [Abstract][Full Text] [Related]  

  • 49. FOG1 and FOG2 genes, required for the transcriptional activation of glucose-repressible genes of Kluyveromyces lactis, are homologous to GAL83 and SNF1 of saccharomyces cerevisiae.
    Goffrini P; Ficarelli A; Donnini C; Lodi T; Puglisi PP; Ferrero I
    Curr Genet; 1996 Mar; 29(4):316-26. PubMed ID: 8598052
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Derepression of gene expression mediated by the 5' upstream region of the isocitrate lyase gene of Candida tropicalis is controlled by two distinct regulatory pathways in Saccharomyces cerevisiae.
    Umemura K; Atomi H; Kanai T; Takeshita S; Kanayama N; Ueda M; Tanaka A
    Eur J Biochem; 1997 Feb; 243(3):748-52. PubMed ID: 9057841
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation and characterization of the yeast ARGRII gene involved in regulating both anabolism and catabolism of arginine.
    Dubois E; Messenguy F
    Mol Gen Genet; 1985; 198(2):283-9. PubMed ID: 3884975
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isolation of genes by complementation in yeast.
    Rose MD
    Methods Enzymol; 1987; 152():481-504. PubMed ID: 2821357
    [No Abstract]   [Full Text] [Related]  

  • 53. Isolation of the yeast INO1 gene: located on an autonomously replicating plasmid, the gene is fully regulated.
    Klig LS; Henry SA
    Proc Natl Acad Sci U S A; 1984 Jun; 81(12):3816-20. PubMed ID: 6374665
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene cloning in Aspergillus nidulans: isolation of the isocitrate lyase gene (acuD).
    Ballance DJ; Turner G
    Mol Gen Genet; 1986 Feb; 202(2):271-5. PubMed ID: 3010050
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Glucose repression in the yeast Saccharomyces cerevisiae.
    Trumbly RJ
    Mol Microbiol; 1992 Jan; 6(1):15-21. PubMed ID: 1310793
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Control of malate synthase formation in Rhizopus nigricans.
    Wegener WS; Schell J; Romano AH
    J Bacteriol; 1967 Dec; 94(6):1951-6. PubMed ID: 6074401
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chromosomal location of the catalase structural genes in Zea mays using B-A translocations.
    Roupakias DG; McMillin DE; Scandalios JG
    Theor Appl Genet; 1980 Sep; 58(5):211-8. PubMed ID: 24301445
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Glucosamine-resistant mutations in yeast affecting the glucose repression sensitivity of electron transport enzymes.
    Mishra SD; Michels CA
    Curr Genet; 1982 Dec; 6(3):209-17. PubMed ID: 24186547
    [TBL] [Abstract][Full Text] [Related]  

  • 59. PAS kinase: integrating nutrient sensing with nutrient partitioning.
    Cardon CM; Rutter J
    Semin Cell Dev Biol; 2012 Aug; 23(6):626-30. PubMed ID: 22245833
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae.
    Schüller HJ
    Curr Genet; 2003 Jun; 43(3):139-60. PubMed ID: 12715202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.