BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 28231337)

  • 1. 4D dose simulation in volumetric arc therapy: Accuracy and affecting parameters.
    Sothmann T; Gauer T; Werner R
    PLoS One; 2017; 12(2):e0172810. PubMed ID: 28231337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 4D VMAT planning and verification technique for dynamic tracking using a direct aperture deformation (DAD) method.
    Zhang Y; Yang Y; Fu W; Li X; Li T; Heron DE; Huq MS
    J Appl Clin Med Phys; 2017 Mar; 18(2):50-61. PubMed ID: 28300367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motion as a perturbation: measurement-guided dose estimates to moving patient voxels during modulated arc deliveries.
    Feygelman V; Stambaugh C; Zhang G; Hunt D; Opp D; Wolf TK; Nelms BE
    Med Phys; 2013 Feb; 40(2):021708. PubMed ID: 23387731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of dosimetry impact of 4DCT uncertainty in 4D dose calculation for lung SBRT.
    Liu G; Hu F; Ding X; Li X; Shao Q; Wang Y; Yang J; Quan H
    Radiat Oncol; 2019 Jan; 14(1):1. PubMed ID: 30621744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. VMAT QA: measurement-guided 4D dose reconstruction on a patient.
    Nelms BE; Opp D; Robinson J; Wolf TK; Zhang G; Moros E; Feygelman V
    Med Phys; 2012 Jul; 39(7):4228-38. PubMed ID: 22830756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel approach to SBRT patient quality assurance using EPID-based real-time transit dosimetry : A step to QA with in vivo EPID dosimetry.
    Moustakis C; Ebrahimi Tazehmahalleh F; Elsayad K; Fezeu F; Scobioala S
    Strahlenther Onkol; 2020 Feb; 196(2):182-192. PubMed ID: 31925465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4D Monte Carlo dose calculations for pre-treatment quality assurance of VMAT SBRT: a phantom-based feasibility study.
    Roberts NF; Williams M; Holloway L; Metcalfe P; Oborn BM
    Phys Med Biol; 2019 Oct; 64(21):21NT01. PubMed ID: 31470421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method to reconstruct and apply 3D primary fluence for treatment delivery verification.
    Liu S; Mazur TR; Li H; Curcuru A; Green OL; Sun B; Mutic S; Yang D
    J Appl Clin Med Phys; 2017 Jan; 18(1):128-138. PubMed ID: 28291913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dosimetric comparison between volumetric-modulated arc therapy and dynamic conformal arc therapy in SBRT.
    Stathakis S; Narayanasamy G; Licon AL; Myers P; Li Y; Crownover R; Papanikolaou N
    J BUON; 2019; 24(2):838-843. PubMed ID: 31128044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion as perturbation. II. Development of the method for dosimetric analysis of motion effects with fixed-gantry IMRT.
    Nelms BE; Opp D; Zhang G; Moros E; Feygelman V
    Med Phys; 2014 Jun; 41(6):061704. PubMed ID: 24877799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correspondence model-based 4D VMAT dose simulation for analysis of local metastasis recurrence after extracranial SBRT.
    Sothmann T; Gauer T; Wilms M; Werner R
    Phys Med Biol; 2017 Nov; 62(23):9001-9017. PubMed ID: 29059054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Under-reported dosimetry errors due to interplay effects during VMAT dose delivery in extreme hypofractionated stereotactic radiotherapy.
    Gauer T; Sothmann T; Blanck O; Petersen C; Werner R
    Strahlenther Onkol; 2018 Jun; 194(6):570-579. PubMed ID: 29450592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of a novel algorithm for true 4D-VMAT planning with comparison to tracked, gated and static delivery.
    Chin E; Otto K
    Med Phys; 2011 May; 38(5):2698-707. PubMed ID: 21776806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 4D VMAT, gated VMAT, and 3D VMAT for stereotactic body radiation therapy in lung.
    Chin E; Loewen SK; Nichol A; Otto K
    Phys Med Biol; 2013 Feb; 58(4):749-70. PubMed ID: 23324560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volumetric modulated arc therapy for delivery of hypofractionated stereotactic lung radiotherapy: A dosimetric and treatment efficiency analysis.
    McGrath SD; Matuszak MM; Yan D; Kestin LL; Martinez AA; Grills IS
    Radiother Oncol; 2010 May; 95(2):153-7. PubMed ID: 20116115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dosimetric impact of breathing motion in lung stereotactic body radiotherapy treatment using intensity modulated radiotherapy and volumetric modulated arc therapy [corrected].
    Rao M; Wu J; Cao D; Wong T; Mehta V; Shepard D; Ye J
    Int J Radiat Oncol Biol Phys; 2012 Jun; 83(2):e251-6. PubMed ID: 22365622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in accumulated dose of volumetric-modulated arc therapy for pancreatic cancer due to different beam starting phases.
    Sasaki M; Nakamura M; Mukumoto N; Goto Y; Ishihara Y; Nakata M; Sugimoto N; Mizowaki T
    J Appl Clin Med Phys; 2019 Oct; 20(10):118-126. PubMed ID: 31539194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of planned dose reporting methods on Gamma pass rates for IROC lung and liver motion phantoms treated with pencil beam scanning protons.
    Kang Y; Shen J; Liu W; Taylor PA; Mehrens HS; Ding X; Hu Y; Tryggestad E; Keole SR; Schild SE; Wong WW; Fatyga M; Bues M
    Radiat Oncol; 2019 Jun; 14(1):108. PubMed ID: 31208439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel approach to EPID-based 3D volumetric dosimetry for IMRT and VMAT QA.
    Alhazmi A; Gianoli C; Neppl S; Martins J; Veloza S; Podesta M; Verhaegen F; Reiner M; Belka C; Parodi K
    Phys Med Biol; 2018 May; 63(11):115002. PubMed ID: 29714714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing phase- and amplitude-gated volumetric modulated arc therapy for stereotactic body radiation therapy using 3D printed lung phantom.
    Lee M; Yoon K; Cho B; Kim SS; Song SY; Choi EK; Ahn S; Lee SW; Kwak J
    J Appl Clin Med Phys; 2019 Feb; 20(2):107-113. PubMed ID: 30667581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.