These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 28231395)

  • 21. A Connectomic Atlas of the Human Cerebrum-Chapter 3: The Motor, Premotor, and Sensory Cortices.
    Baker CM; Burks JD; Briggs RG; Sheets JR; Conner AK; Glenn CA; Sali G; McCoy TM; Battiste JD; O'Donoghue DL; Sughrue ME
    Oper Neurosurg (Hagerstown); 2018 Dec; 15(suppl_1):S75-S121. PubMed ID: 30260446
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potential for Resting-State fMRI of the Amygdala in Elucidating Neural Mechanisms of Adaptive Self-Regulatory Strategies: A Systematic Review.
    Warren SM; Chou YH; Steklis HD
    Brain Connect; 2020 Feb; 10(1):3-17. PubMed ID: 31950847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Brain functional plasticity at rest and during action in multiple sclerosis patients.
    Faivre A; Rico A; Zaaraoui W; Reuter F; Confort-Gouny S; Guye M; Pelletier J; Ranjeva JP; Audoin B
    J Clin Neurosci; 2015 Sep; 22(9):1438-43. PubMed ID: 26149402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The structural-functional connectome and the default mode network of the human brain.
    Horn A; Ostwald D; Reisert M; Blankenburg F
    Neuroimage; 2014 Nov; 102 Pt 1():142-51. PubMed ID: 24099851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neonatal Amygdala Functional Connectivity at Rest in Healthy and Preterm Infants and Early Internalizing Symptoms.
    Rogers CE; Sylvester CM; Mintz C; Kenley JK; Shimony JS; Barch DM; Smyser CD
    J Am Acad Child Adolesc Psychiatry; 2017 Feb; 56(2):157-166. PubMed ID: 28117062
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catecholaminergic Neuromodulation Shapes Intrinsic MRI Functional Connectivity in the Human Brain.
    van den Brink RL; Pfeffer T; Warren CM; Murphy PR; Tona KD; van der Wee NJ; Giltay E; van Noorden MS; Rombouts SA; Donner TH; Nieuwenhuis S
    J Neurosci; 2016 Jul; 36(30):7865-76. PubMed ID: 27466332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional connectivity of the amygdala is linked to individual differences in emotional pain facilitation.
    Gandhi W; Rosenek NR; Harrison R; Salomons TV
    Pain; 2020 Feb; 161(2):300-307. PubMed ID: 31613866
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment.
    Córdova-Palomera A; Tornador C; Falcón C; Bargalló N; Nenadic I; Deco G; Fañanás L
    Hum Brain Mapp; 2015 Oct; 36(10):3761-76. PubMed ID: 26096943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disrupted amygdalar subregion functional connectivity and evidence of a compensatory network in generalized anxiety disorder.
    Etkin A; Prater KE; Schatzberg AF; Menon V; Greicius MD
    Arch Gen Psychiatry; 2009 Dec; 66(12):1361-72. PubMed ID: 19996041
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural 'connectomic' alterations in the limbic system of multiple sclerosis patients with major depression.
    Nigro S; Passamonti L; Riccelli R; Toschi N; Rocca F; Valentino P; Nisticò R; Fera F; Quattrone A
    Mult Scler; 2015 Jul; 21(8):1003-12. PubMed ID: 25533294
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modulation of resting state functional connectivity of the motor network by transcranial pulsed current stimulation.
    Sours C; Alon G; Roys S; Gullapalli RP
    Brain Connect; 2014 Apr; 4(3):157-65. PubMed ID: 24593667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Serum BDNF correlates with connectivity in the (pre)motor hub in the aging human brain--a resting-state fMRI pilot study.
    Mueller K; Arelin K; Möller HE; Sacher J; Kratzsch J; Luck T; Riedel-Heller S; Villringer A; Schroeter ML
    Neurobiol Aging; 2016 Feb; 38():181-187. PubMed ID: 26827656
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resting-state functional MRI studies on infant brains: A decade of gap-filling efforts.
    Zhang H; Shen D; Lin W
    Neuroimage; 2019 Jan; 185():664-684. PubMed ID: 29990581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI.
    Cauzzo S; Singh K; Stauder M; García-Gomar MG; Vanello N; Passino C; Staab J; Indovina I; Bianciardi M
    Neuroimage; 2022 Apr; 250():118925. PubMed ID: 35074504
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A connectionist approach to mapping the human connectome permits simulations of neural activity within an artificial brain.
    McNorgan C; Joanisse MF
    Brain Connect; 2014 Feb; 4(1):40-52. PubMed ID: 24117388
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heart rate variability is associated with amygdala functional connectivity with MPFC across younger and older adults.
    Sakaki M; Yoo HJ; Nga L; Lee TH; Thayer JF; Mather M
    Neuroimage; 2016 Oct; 139():44-52. PubMed ID: 27261160
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pig Brains Have Homologous Resting-State Networks with Human Brains.
    Simchick G; Shen A; Campbell B; Park HJ; West FD; Zhao Q
    Brain Connect; 2019 Sep; 9(7):566-579. PubMed ID: 31115245
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adults vs. neonates: Differentiation of functional connectivity between the basolateral amygdala and occipitotemporal cortex.
    Hansen HA; Li J; Saygin ZM
    PLoS One; 2020; 15(10):e0237204. PubMed ID: 33075046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resting state fMRI correlates of Theory of Mind impairment in amyotrophic lateral sclerosis.
    Trojsi F; Di Nardo F; Santangelo G; Siciliano M; Femiano C; Passaniti C; Caiazzo G; Fratello M; Cirillo M; Monsurrò MR; Esposito F; Tedeschi G
    Cortex; 2017 Dec; 97():1-16. PubMed ID: 29073458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.