These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparative genomics of the pine pathogens and beetle symbionts in the genus Grosmannia. Massoumi Alamouti S; Haridas S; Feau N; Robertson G; Bohlmann J; Breuil C Mol Biol Evol; 2014 Jun; 31(6):1454-74. PubMed ID: 24627033 [TBL] [Abstract][Full Text] [Related]
3. A novel application of RNase H2-dependent quantitative PCR for detection and quantification of Grosmannia clavigera, a mountain pine beetle fungal symbiont, in environmental samples. McAllister CH; Fortier CE; St Onge KR; Sacchi BM; Nawrot MJ; Locke T; Cooke JEK Tree Physiol; 2018 Mar; 38(3):485-501. PubMed ID: 29329457 [TBL] [Abstract][Full Text] [Related]
4. Target-specific PCR primers can detect and differentiate ophiostomatoid fungi from microbial communities associated with the mountain pine beetle Dendroctonus ponderosae. Khadempour L; Massoumi Alamouti S; Hamelin R; Bohlmann J; Breuil C Fungal Biol; 2010 Oct; 114(10):825-33. PubMed ID: 20943192 [TBL] [Abstract][Full Text] [Related]
5. Fungal associates of the lodgepole pine beetle, Dendroctonus murrayanae. Six DL; de Beer ZW; Duong TA; Carroll AL; Wingfield MJ Antonie Van Leeuwenhoek; 2011 Aug; 100(2):231-44. PubMed ID: 21553309 [TBL] [Abstract][Full Text] [Related]
6. The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts. Goodsman DW; Erbilgin N; Lieffers VJ Environ Entomol; 2012 Jun; 41(3):478-86. PubMed ID: 22732605 [TBL] [Abstract][Full Text] [Related]
7. Comparative phylogeography, genetic differentiation and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis. Roe AD; Rice AV; Coltman DW; Cooke JE; Sperling FA Mol Ecol; 2011 Feb; 20(3):584-600. PubMed ID: 21166729 [TBL] [Abstract][Full Text] [Related]
8. Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen Grosmannia clavigera. Alamouti SM; Wang V; Diguistini S; Six DL; Bohlmann J; Hamelin RC; Feau N; Breuil C Mol Ecol; 2011 Jun; 20(12):2581-602. PubMed ID: 21557782 [TBL] [Abstract][Full Text] [Related]
9. Single-nucleotide polymorphism discovery in Leptographium longiclavatum, a mountain pine beetle-associated symbiotic fungus, using whole-genome resequencing. Ojeda DI; Dhillon B; Tsui CK; Hamelin RC Mol Ecol Resour; 2014 Mar; 14(2):401-10. PubMed ID: 24152017 [TBL] [Abstract][Full Text] [Related]
10. The relative abundance of mountain pine beetle fungal associates through the beetle life cycle in pine trees. Khadempour L; LeMay V; Jack D; Bohlmann J; Breuil C Microb Ecol; 2012 Nov; 64(4):909-17. PubMed ID: 22735936 [TBL] [Abstract][Full Text] [Related]
11. Effects of Temperature on Growth, Sporulation, and Competition of Mountain Pine Beetle Fungal Symbionts. Moore ML; Six DL Microb Ecol; 2015 Aug; 70(2):336-47. PubMed ID: 25773718 [TBL] [Abstract][Full Text] [Related]
12. Competition and coexistence in a multi-partner mutualism: interactions between two fungal symbionts of the mountain pine beetle in beetle-attacked trees. Bleiker KP; Six DL Microb Ecol; 2009 Jan; 57(1):191-202. PubMed ID: 18545867 [TBL] [Abstract][Full Text] [Related]
13. Population structure of mountain pine beetle symbiont Leptographium longiclavatum and the implication on the multipartite beetle-fungi relationships. Tsui CK; Farfan L; Roe AD; Rice AV; Cooke JE; El-Kassaby YA; Hamelin RC PLoS One; 2014; 9(8):e105455. PubMed ID: 25153489 [TBL] [Abstract][Full Text] [Related]
14. Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. Six DL; Bentz BJ Microb Ecol; 2007 Jul; 54(1):112-8. PubMed ID: 17264992 [TBL] [Abstract][Full Text] [Related]
15. Ophiostomatoid fungi including two new fungal species associated with pine root-feeding beetles in northern Spain. Romón P; De Beer ZW; Fernández M; Diez J; Wingfield BD; Wingfield MJ Antonie Van Leeuwenhoek; 2014 Dec; 106(6):1167-84. PubMed ID: 25253585 [TBL] [Abstract][Full Text] [Related]
16. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion. Therrien J; Mason CJ; Cale JA; Adams A; Aukema BH; Currie CR; Raffa KF; Erbilgin N Oecologia; 2015 Oct; 179(2):467-85. PubMed ID: 26037523 [TBL] [Abstract][Full Text] [Related]
17. The role of temperature variability in stabilizing the mountain pine beetle-fungus mutualism. Addison AL; Powell JA; Six DL; Moore M; Bentz BJ J Theor Biol; 2013 Oct; 335():40-50. PubMed ID: 23791850 [TBL] [Abstract][Full Text] [Related]
18. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts. Cale JA; Collignon RM; Klutsch JG; Kanekar SS; Hussain A; Erbilgin N PLoS One; 2016; 11(9):e0162197. PubMed ID: 27583519 [TBL] [Abstract][Full Text] [Related]
19. Host Defense Metabolites Alter the Interactions between a Bark Beetle and its Symbiotic Fungi. Agbulu V; Zaman R; Ishangulyyeva G; Cahill JF; Erbilgin N Microb Ecol; 2022 Oct; 84(3):834-843. PubMed ID: 34674014 [TBL] [Abstract][Full Text] [Related]
20. Rapid identification and detection of pine pathogenic fungi associated with mountain pine beetles by padlock probes. Tsui CK; Wang B; Khadempour L; Alamouti SM; Bohlmann J; Murray BW; Hamelin RC J Microbiol Methods; 2010 Oct; 83(1):26-33. PubMed ID: 20650291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]