BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1012 related articles for article (PubMed ID: 28231463)

  • 1. Neural Circuitry of Wakefulness and Sleep.
    Scammell TE; Arrigoni E; Lipton JO
    Neuron; 2017 Feb; 93(4):747-765. PubMed ID: 28231463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Newly identified sleep-wake and circadian circuits as potential therapeutic targets.
    Venner A; Todd WD; Fraigne J; Bowrey H; Eban-Rothschild A; Kaur S; Anaclet C
    Sleep; 2019 May; 42(5):. PubMed ID: 30722061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Orexin neurons are necessary for the circadian control of REM sleep.
    Kantor S; Mochizuki T; Janisiewicz AM; Clark E; Nishino S; Scammell TE
    Sleep; 2009 Sep; 32(9):1127-34. PubMed ID: 19750917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microdialysis perfusion of orexin-A in the basal forebrain increases wakefulness in freely behaving rats.
    Thakkar MM; Ramesh V; Strecker RE; McCarley RW
    Arch Ital Biol; 2001 Apr; 139(3):313-28. PubMed ID: 11330208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Neuroscience Tools That Are Identifying the Sleep-Wake Circuit.
    Shiromani PJ; Peever JH
    Sleep; 2017 Apr; 40(4):. PubMed ID: 28329204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quartet neural system model orchestrating sleep and wakefulness mechanisms.
    Tamakawa Y; Karashima A; Koyama Y; Katayama N; Nakao M
    J Neurophysiol; 2006 Apr; 95(4):2055-69. PubMed ID: 16282204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback.
    Fuller PM; Gooley JJ; Saper CB
    J Biol Rhythms; 2006 Dec; 21(6):482-93. PubMed ID: 17107938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice.
    Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE
    J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suprachiasmatic nucleus in sleep-wake regulation.
    Moore RY
    Sleep Med; 2007 Dec; 8 Suppl 3():27-33. PubMed ID: 18032104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep neurobiology for the clinician.
    España RA; Scammell TE
    Sleep; 2004 Jun; 27(4):811-20. PubMed ID: 15283019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of prior wakefulness on REM sleep.
    Knowles JB; MacLean AW; Vetere C; Young P; Salem L; Surridge-David M; Coulter M
    J Biol Rhythms; 1987; 2(2):81-93. PubMed ID: 2979656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brain Circuitry Controlling Sleep and Wakefulness.
    Horner RL; Peever JH
    Continuum (Minneap Minn); 2017 Aug; 23(4, Sleep Neurology):955-972. PubMed ID: 28777170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Mathematical modeling of sleep-wake rhythms].
    Nakao M; Yamamoto M
    Nihon Rinsho; 1998 Feb; 56(2):499-503. PubMed ID: 9503858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurobiology of sleep.
    Lu BS; Zee PC
    Clin Chest Med; 2010 Jun; 31(2):309-18. PubMed ID: 20488289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural Circuits for Sleep-Wake Regulation.
    Wu Y; Wang L; Yang F; Xi W
    Adv Exp Med Biol; 2020; 1284():91-112. PubMed ID: 32852742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling interindividual differences in spontaneous internal desynchrony patterns.
    Gleit RD; Diniz Behn CG; Booth V
    J Biol Rhythms; 2013 Oct; 28(5):339-55. PubMed ID: 24132060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of an eight-hour advance of the light-dark cycle on sleep-wake rhythm in the rat.
    Sei H; Kiuchi T; Chang HY; Morita Y
    Neurosci Lett; 1992 Mar; 137(2):161-4. PubMed ID: 1584456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Circadian Output Circuit Controls Sleep-Wake Arousal in Drosophila.
    Guo F; Holla M; Díaz MM; Rosbash M
    Neuron; 2018 Nov; 100(3):624-635.e4. PubMed ID: 30269992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.