These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1013 related articles for article (PubMed ID: 28231463)

  • 21. Progressive Loss of the Orexin Neurons Reveals Dual Effects on Wakefulness.
    Branch AF; Navidi W; Tabuchi S; Terao A; Yamanaka A; Scammell TE; Diniz Behn C
    Sleep; 2016 Feb; 39(2):369-77. PubMed ID: 26446125
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of prior wakefulness and circadian phase on nap sleep.
    Dinges DF
    Electroencephalogr Clin Neurophysiol; 1986 Sep; 64(3):224-7. PubMed ID: 2427317
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circadian rhythms of sleep and wakefulness in mice: analysis using long-term automated recording of sleep.
    Richardson GS; Moore-Ede MC; Czeisler CA; Dement WC
    Am J Physiol; 1985 Mar; 248(3 Pt 2):R320-30. PubMed ID: 3838419
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Melanin-concentrating hormone neurons specifically promote rapid eye movement sleep in mice.
    Vetrivelan R; Kong D; Ferrari LL; Arrigoni E; Madara JC; Bandaru SS; Lowell BB; Lu J; Saper CB
    Neuroscience; 2016 Nov; 336():102-113. PubMed ID: 27595887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Homeostatic, circadian, and emotional regulation of sleep.
    Saper CB; Cano G; Scammell TE
    J Comp Neurol; 2005 Dec; 493(1):92-8. PubMed ID: 16254994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circadian and arousal state influences on thermoregulation in the pigeon.
    Heller HC; Graf R; Rautenberg W
    Am J Physiol; 1983 Sep; 245(3):R321-8. PubMed ID: 6614203
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Regulation of sleep and wakefulness through the monoaminergic and cholinergic systems].
    Koyama Y
    Brain Nerve; 2012 Jun; 64(6):601-10. PubMed ID: 22647467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms.
    Saper CB
    Prog Brain Res; 2006; 153():243-52. PubMed ID: 16876579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Statistical properties of sleep-wake behavior in the rat and their relation to circadian and ultradian phases.
    Stephenson R; Famina S; Caron AM; Lim J
    Sleep; 2013 Sep; 36(9):1377-90. PubMed ID: 23997372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Controlling sleep/wakefulness using optogenetics].
    Yamanaka A
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2015 Aug; 35(4):97-102. PubMed ID: 26434098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sleep responses to light and dark are shaped by early experience.
    Prichard JR; Fahy JL; Obermeyer WH; Behan M; Benca RM
    Behav Neurosci; 2004 Dec; 118(6):1262-73. PubMed ID: 15598135
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cortical oscillations in human medial temporal lobe during wakefulness and all-night sleep.
    Uchida S; Maehara T; Hirai N; Okubo Y; Shimizu H
    Brain Res; 2001 Feb; 891(1-2):7-19. PubMed ID: 11164805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of sleep-wake patterns in a novel transgenic mouse line overexpressing human prepro-orexin/hypocretin.
    Mäkelä KA; Wigren HK; Zant JC; Sakurai T; Alhonen L; Kostin A; Porkka-Heiskanen T; Herzig KH
    Acta Physiol (Oxf); 2010 Mar; 198(3):237-49. PubMed ID: 20003098
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators.
    Dijk DJ; von Schantz M
    J Biol Rhythms; 2005 Aug; 20(4):279-90. PubMed ID: 16077148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidation of Neural Circuits Involved in the Regulation of Sleep/Wakefulness Using Optogenetics.
    Tsunematsu T
    Adv Exp Med Biol; 2021; 1293():391-406. PubMed ID: 33398828
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective activation of cholinergic basal forebrain neurons induces immediate sleep-wake transitions.
    Han Y; Shi YF; Xi W; Zhou R; Tan ZB; Wang H; Li XM; Chen Z; Feng G; Luo M; Huang ZL; Duan S; Yu YQ
    Curr Biol; 2014 Mar; 24(6):693-8. PubMed ID: 24613308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sleep states alter activity of suprachiasmatic nucleus neurons.
    Deboer T; Vansteensel MJ; Détári L; Meijer JH
    Nat Neurosci; 2003 Oct; 6(10):1086-90. PubMed ID: 12958601
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mathematical models of regulatory mechanisms of sleep-wake rhythms.
    Nakao M; Karashima A; Katayama N
    Cell Mol Life Sci; 2007 May; 64(10):1236-43. PubMed ID: 17364138
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of wake inducing brain stem area on rapid eye movement sleep regulation in freely moving cats.
    Thankachan S; Islam F; Mallick BN
    Brain Res Bull; 2001 May; 55(1):43-9. PubMed ID: 11427336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurobiological aspects of sleep physiology.
    Moszczynski A; Murray BJ
    Neurol Clin; 2012 Nov; 30(4):963-85. PubMed ID: 23099125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.