These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1556 related articles for article (PubMed ID: 28231463)

  • 41. Development of Circadian Sleep Regulation in the Rat: A Longitudinal Study Under Constant Conditions.
    Frank MG; Ruby NF; Heller HC; Franken P
    Sleep; 2017 Mar; 40(3):. PubMed ID: 28364421
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence.
    Datta S; Maclean RR
    Neurosci Biobehav Rev; 2007; 31(5):775-824. PubMed ID: 17445891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neurobiological aspects of sleep physiology.
    Moszczynski A; Murray BJ
    Neurol Clin; 2012 Nov; 30(4):963-85. PubMed ID: 23099125
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Circuit-based interrogation of sleep control.
    Weber F; Dan Y
    Nature; 2016 Oct; 538(7623):51-59. PubMed ID: 27708309
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neuroanatomical and neurophysiological aspects of sleep: basic science and clinical relevance.
    Sinton CM; McCarley RW
    Semin Clin Neuropsychiatry; 2000 Jan; 5(1):6-19. PubMed ID: 10704534
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Underlying brain mechanisms that regulate sleep-wakefulness cycles.
    Gvilia I
    Int Rev Neurobiol; 2010; 93():1-21. PubMed ID: 20969999
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Physiologically-based modeling of sleep-wake regulatory networks.
    Booth V; Diniz Behn CG
    Math Biosci; 2014 Apr; 250():54-68. PubMed ID: 24530893
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia in narcolepsy.
    Dauvilliers Y; Jennum P; Plazzi G
    Sleep Med; 2013 Aug; 14(8):775-81. PubMed ID: 23219054
    [TBL] [Abstract][Full Text] [Related]  

  • 49. GABA and glutamate neurons in the VTA regulate sleep and wakefulness.
    Yu X; Li W; Ma Y; Tossell K; Harris JJ; Harding EC; Ba W; Miracca G; Wang D; Li L; Guo J; Chen M; Li Y; Yustos R; Vyssotski AL; Burdakov D; Yang Q; Dong H; Franks NP; Wisden W
    Nat Neurosci; 2019 Jan; 22(1):106-119. PubMed ID: 30559475
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms of sleep-wake cycle modulation.
    Murillo-Rodríguez E; Arias-Carrión O; Sanguino-Rodríguez K; González-Arias M; Haro R
    CNS Neurol Disord Drug Targets; 2009 Aug; 8(4):245-53. PubMed ID: 19689306
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Biological principles of sleep and wake].
    Rodenbeck A
    Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz; 2011 Dec; 54(12):1270-5. PubMed ID: 22116476
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lateral hypothalamic circuits for sleep-wake control.
    Yamashita T; Yamanaka A
    Curr Opin Neurobiol; 2017 Jun; 44():94-100. PubMed ID: 28427008
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A mathematical model of homeostatic regulation of sleep-wake cycles by hypocretin/orexin.
    Postnova S; Voigt K; Braun HA
    J Biol Rhythms; 2009 Dec; 24(6):523-35. PubMed ID: 19926811
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discharge characteristics of neurons of nucleus reuniens across sleep-wake states in the behaving rat.
    Viena TD; Vertes RP; Linley SB
    Behav Brain Res; 2021 Jul; 410():113325. PubMed ID: 33910030
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Circadian timed wakefulness at dawn opposes compensatory sleep responses after sleep deprivation in Octodon degus.
    Kas MJ; Edgar DM
    Sleep; 1999 Dec; 22(8):1045-53. PubMed ID: 10617165
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Neurobiology of Sleep and Wakefulness.
    Schwartz MD; Kilduff TS
    Psychiatr Clin North Am; 2015 Dec; 38(4):615-44. PubMed ID: 26600100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increased hypocretin-1 levels in cerebrospinal fluid after REM sleep deprivation.
    Pedrazzoli M; D'Almeida V; Martins PJ; Machado RB; Ling L; Nishino S; Tufik S; Mignot E
    Brain Res; 2004 Jan; 995(1):1-6. PubMed ID: 14644464
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Orexin signaling modulates synchronized excitation in the sublaterodorsal tegmental nucleus to stabilize REM sleep.
    Feng H; Wen SY; Qiao QC; Pang YJ; Wang SY; Li HY; Cai J; Zhang KX; Chen J; Hu ZA; Luo FL; Wang GZ; Yang N; Zhang J
    Nat Commun; 2020 Jul; 11(1):3661. PubMed ID: 32694504
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neurochemical aspects of sleep regulation with specific focus on slow-wave sleep.
    Luppi PH
    World J Biol Psychiatry; 2010 Jun; 11 Suppl 1():4-8. PubMed ID: 20509826
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Motor Theory of Sleep-Wake Control: Arousal-Action Circuit.
    Liu D; Dan Y
    Annu Rev Neurosci; 2019 Jul; 42():27-46. PubMed ID: 30699051
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 78.