These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 28231554)
1. Design of elution strategy for simultaneous detection of chloramphenicol and gentamicin in complex samples using surface plasmon resonance. Xia Y; Su R; Huang R; Ding L; Wang L; Qi W; He Z Biosens Bioelectron; 2017 Jun; 92():266-272. PubMed ID: 28231554 [TBL] [Abstract][Full Text] [Related]
2. Sequential sandwich immunoassay for simultaneous detection in trace samples using single-channel surface plasmon resonance. Xia Y; Zhang P; Yuan H; Su R; Huang R; Qi W; He Z Analyst; 2019 Sep; 144(19):5700-5705. PubMed ID: 31486454 [TBL] [Abstract][Full Text] [Related]
3. A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Fernández F; Hegnerová K; Piliarik M; Sanchez-Baeza F; Homola J; Marco MP Biosens Bioelectron; 2010 Dec; 26(4):1231-8. PubMed ID: 20637590 [TBL] [Abstract][Full Text] [Related]
4. Label-free and multiplex detection of antibiotic residues in milk using imaging surface plasmon resonance-based immunosensor. Rebe Raz S; Bremer MG; Haasnoot W; Norde W Anal Chem; 2009 Sep; 81(18):7743-9. PubMed ID: 19685910 [TBL] [Abstract][Full Text] [Related]
5. Comparsion of an immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, florfenicol and chloramphenicol in food samples. Guo L; Song S; Liu L; Peng J; Kuang H; Xu C Biomed Chromatogr; 2015 Sep; 29(9):1432-9. PubMed ID: 25675893 [TBL] [Abstract][Full Text] [Related]
6. Surface plasmon resonance assay for chloramphenicol without surface regeneration. Yuan J; Addo J; Aguilar MI; Wu Y Anal Biochem; 2009 Jul; 390(1):97-9. PubMed ID: 19358818 [TBL] [Abstract][Full Text] [Related]
7. Surface plasmon resonance assay for chloramphenicol. Yuan J; Oliver R; Aguilar MI; Wu Y Anal Chem; 2008 Nov; 80(21):8329-33. PubMed ID: 18837517 [TBL] [Abstract][Full Text] [Related]
8. Biofunctionalized gold nanoparticles for SPR-biosensor-based detection of CEA in blood plasma. Špringer T; Homola J Anal Bioanal Chem; 2012 Dec; 404(10):2869-75. PubMed ID: 22895740 [TBL] [Abstract][Full Text] [Related]
10. Fluorescence quenching for chloramphenicol detection in milk based on protein-stabilized Au nanoclusters. Tan Z; Xu H; Li G; Yang X; Choi MM Spectrochim Acta A Mol Biomol Spectrosc; 2015; 149():615-20. PubMed ID: 25985125 [TBL] [Abstract][Full Text] [Related]
11. Analysis and monitoring of chloramphenicol residues in food of animal origin in Slovenia from 1991 to 2000. Cerkvenik V Food Addit Contam; 2002 Apr; 19(4):357-67. PubMed ID: 11962693 [TBL] [Abstract][Full Text] [Related]
12. A highly sensitive detection of chloramphenicol based on chemiluminescence immunoassays with the cheap functionalized Fe Linyu W; Manwen Y; Chengzhi F; Xi Y Luminescence; 2017 Sep; 32(6):1039-1044. PubMed ID: 28276194 [TBL] [Abstract][Full Text] [Related]
13. Clenbuterol Assay by Spectral Imaging Surface Plasmon Resonance Biosensor System. Wu Y; Yao M; Fang X; Yang Y; Cheng X Appl Biochem Biotechnol; 2015 Nov; 177(6):1327-37. PubMed ID: 26319570 [TBL] [Abstract][Full Text] [Related]
14. Immunoassays for the rapid detection of gentamicin and micronomicin in swine muscle. Chen Y; Li X; He L; Tang S; Xiao X J AOAC Int; 2010; 93(1):335-42. PubMed ID: 20334196 [TBL] [Abstract][Full Text] [Related]
15. A gel-based visual immunoassay for non-instrumental detection of chloramphenicol in food samples. Yuan M; Sheng W; Zhang Y; Wang J; Yang Y; Zhang S; Goryacheva IY; Wang S Anal Chim Acta; 2012 Nov; 751():128-34. PubMed ID: 23084061 [TBL] [Abstract][Full Text] [Related]
16. Highly sensitive and selective surface plasmon resonance sensor for detection of sub-ppb levels of benzo[a]pyrene by indirect competitive immunoreaction method. Miura N; Sasaki M; Gobi KV; Kataoka C; Shoyama Y Biosens Bioelectron; 2003 Jul; 18(7):953-9. PubMed ID: 12713919 [TBL] [Abstract][Full Text] [Related]
17. Establishment of magnetic beads-based enzyme immunoassay for detection of chloramphenicol in milk. Xu J; Yin W; Zhang Y; Yi J; Meng M; Wang Y; Xue H; Zhang T; Xi R Food Chem; 2012 Oct; 134(4):2526-31. PubMed ID: 23442720 [TBL] [Abstract][Full Text] [Related]
18. Development of a new fluorescence immunochromatography strip for detection of chloramphenicol residues in chicken muscles. Bai Z; Luo Y; Xu W; Gao H; Han P; Liu T; Wang H; Chen A; Huang K J Sci Food Agric; 2013 Dec; 93(15):3743-7. PubMed ID: 23681760 [TBL] [Abstract][Full Text] [Related]
19. Wide dynamic range of surface-plasmon-resonance-based assay for hepatitis B surface antigen antibody optimal detection in comparison with ELISA. Tam YJ; Zeenathul NA; Rezaei MA; Mustafa NH; Azmi MLM; Bahaman AR; Lo SC; Tan JS; Hani H; Rasedee A Biotechnol Appl Biochem; 2017 Sep; 64(5):735-744. PubMed ID: 27506960 [TBL] [Abstract][Full Text] [Related]
20. Detection of microcystins in environmental samples using surface plasmon resonance biosensor. Hu C; Gan N; Chen Y; Bi L; Zhang X; Song L Talanta; 2009 Nov; 80(1):407-10. PubMed ID: 19782244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]