These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 2823159)
1. N-terminal acetylation of melanophore-stimulating hormone in the pars intermedia of Xenopus laevis is a physiologically regulated process. Verburg-van Kemenade BM; Jenks BG; Smits RJ Neuroendocrinology; 1987 Oct; 46(4):289-96. PubMed ID: 2823159 [TBL] [Abstract][Full Text] [Related]
2. The processing of beta-endorphin and alpha-melanotrophin in the pars intermedia of Xenopus laevis is influenced by background adaptation. Maruthainar K; Peng-Loh Y; Smyth DG J Endocrinol; 1992 Dec; 135(3):469-78. PubMed ID: 1336791 [TBL] [Abstract][Full Text] [Related]
3. Differential acetylation of pro-opiomelanocortin-derived peptides in the pituitary gland of Xenopus laevis in relation to background adaptation. van Strien FJ; Galas L; Jenks BG; Roubos EW J Endocrinol; 1995 Jul; 146(1):159-67. PubMed ID: 7561613 [TBL] [Abstract][Full Text] [Related]
4. Intracellular acetylation of desacetyl alpha MSH in the Xenopus laevis neurointermediate lobe. Goldman ME; Loh YP Peptides; 1984; 5(6):1129-34. PubMed ID: 6099561 [TBL] [Abstract][Full Text] [Related]
5. Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis. Verburg-van Kemenade BM; Jenks BG; Visser TJ; Tonon MC; Vaudry H Peptides; 1987; 8(1):69-76. PubMed ID: 3106938 [TBL] [Abstract][Full Text] [Related]
6. Differential mechanisms for the N-acetylation of alpha-melanocyte-stimulating hormone and beta-endorphin in the intermediate pituitary of the frog, Xenopus laevis. Dores RM; Steveson TC; Lopez K Neuroendocrinology; 1991 Jan; 53(1):54-62. PubMed ID: 1646412 [TBL] [Abstract][Full Text] [Related]
7. Acetylation of melanocyte-stimulating hormone and beta-endorphin in the pars intermedia of the perinatal pituitary gland in the mouse. Leenders HJ; Janssens JJ; Theunissen HJ; Jenks BG; van Overbeeke AP Neuroendocrinology; 1986; 43(2):166-74. PubMed ID: 2941692 [TBL] [Abstract][Full Text] [Related]
8. In vivo biosynthesis of melanotropins and related peptides in the pars intermedia of Xenopus laevis. Martens GJ; Soeterik F; Jenks BG; van Overbeeke AP Gen Comp Endocrinol; 1983 Jan; 49(1):73-80. PubMed ID: 6298059 [TBL] [Abstract][Full Text] [Related]
9. Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis. Tuinhof R; Ubink R; Tanaka S; Atzori C; van Strien FJ; Roubos EW Cell Tissue Res; 1998 May; 292(2):251-65. PubMed ID: 9560468 [TBL] [Abstract][Full Text] [Related]
10. [Intermediate lobe of the amphibian pituitary gland: an endocrine gland with multiple secretions and under multi-hormonal control]. Tonon MC; Leroux P; Jenks BG; Gouteux L; Jegou S; Guy J; Pelletier G; Vaudry H Ann Endocrinol (Paris); 1985; 46(2):69-87. PubMed ID: 3929669 [TBL] [Abstract][Full Text] [Related]
11. Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis. Tonosaki Y; Cruijsen PM; Nishiyama K; Yaginuma H; Roubos EW J Neuroendocrinol; 2004 Nov; 16(11):894-905. PubMed ID: 15584930 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of background adaptation in Xenopus laevis: role of catecholamines and melanophore-stimulating hormone. van Zoest ID; Heijmen PS; Cruijsen PM; Jenks BG Gen Comp Endocrinol; 1989 Oct; 76(1):19-28. PubMed ID: 2599346 [TBL] [Abstract][Full Text] [Related]
14. Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis. Roubos EW; Berghs CA Cell Tissue Res; 1993 Dec; 274(3):587-96. PubMed ID: 8293450 [TBL] [Abstract][Full Text] [Related]
15. alpha-MSH acetylation in the pituitary gland of the sea bream (Sparus aurata L.) in response to different backgrounds, confinement and air exposure. Arends RJ; Rotllant J; Metz JR; Mancera JM; Wendelaar Bonga SE ; Flik G J Endocrinol; 2000 Aug; 166(2):427-35. PubMed ID: 10927632 [TBL] [Abstract][Full Text] [Related]
16. Morphology of the pars intermedia and the melanophore-stimulating cells in Xenopus laevis in relation to background adaptation. de Rijk EP; Jenks BG; Wendelaar Bonga SE Gen Comp Endocrinol; 1990 Jul; 79(1):74-82. PubMed ID: 2162308 [TBL] [Abstract][Full Text] [Related]
17. Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary. Dotman CH; Maia A; Jenks BG; Roubos EW Neuroendocrinology; 1997 Aug; 66(2):106-13. PubMed ID: 9263207 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis and processing of the N-terminal part of proopiomelanocortin in Xenopus laevis: characterization of gamma-MSH peptides. van Strien FJ; Devreese B; Van Beeumen J; Roubos EW; Jenks BG J Neuroendocrinol; 1995 Oct; 7(10):807-15. PubMed ID: 8563724 [TBL] [Abstract][Full Text] [Related]
19. Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides. Verburg-Van Kemenade BM; Jenks BG; Cruijsen PM; Dings A; Tonon MC; Vaudry H Peptides; 1987; 8(6):1093-100. PubMed ID: 2831518 [TBL] [Abstract][Full Text] [Related]
20. Detection and partial characterization of proopiomelanocortin-related end-products from the pars intermedia of the toad, Bombina orientalis. Dores RM; Truong T; Steveson TC Gen Comp Endocrinol; 1992 Aug; 87(2):197-207. PubMed ID: 1327951 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]