These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
309 related articles for article (PubMed ID: 28231709)
61. Aminopeptidase N1 is involved in Bacillus thuringiensis Cry1Ac toxicity in the beet armyworm, Spodoptera exigua. Qiu L; Cui S; Liu L; Zhang B; Ma W; Wang X; Lei C; Chen L Sci Rep; 2017 Mar; 7():45007. PubMed ID: 28327568 [TBL] [Abstract][Full Text] [Related]
62. In vivo competition assays between Vip3 proteins confirm the occurrence of shared binding sites in Spodoptera littoralis. Lázaro-Berenguer M; Quan Y; Hernández-Martínez P; Ferré J Sci Rep; 2022 Mar; 12(1):4578. PubMed ID: 35301405 [TBL] [Abstract][Full Text] [Related]
63. Identification of Bacillus thuringiensis Cry1AbMod binding-proteins from Spodoptera frugiperda. Martínez de Castro DL; García-Gómez BI; Gómez I; Bravo A; Soberón M Peptides; 2017 Dec; 98():99-105. PubMed ID: 28958733 [TBL] [Abstract][Full Text] [Related]
64. Synergism of Zhu Q; Gao M; Lu L; Liu X J Agric Food Chem; 2021 Oct; 69(40):11816-11824. PubMed ID: 34596393 [TBL] [Abstract][Full Text] [Related]
65. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut. BenFarhat-Touzri D; Saadaoui M; Abdelkefi-Mesrati L; Saadaoui I; Azzouz H; Tounsi S J Invertebr Pathol; 2013 Feb; 112(2):142-5. PubMed ID: 23220238 [TBL] [Abstract][Full Text] [Related]
66. Genetic variability of Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) populations from Latin America is associated with variations in susceptibility to Bacillus thuringiensis cry toxins. Monnerat R; Martins E; Queiroz P; Ordúz S; Jaramillo G; Benintende G; Cozzi J; Real MD; Martinez-Ramirez A; Rausell C; Cerón J; Ibarra JE; Del Rincon-Castro MC; Espinoza AM; Meza-Basso L; Cabrera L; Sánchez J; Soberon M; Bravo A Appl Environ Microbiol; 2006 Nov; 72(11):7029-35. PubMed ID: 16936049 [TBL] [Abstract][Full Text] [Related]
67. Interaction of Bacillus thuringiensis svar. israelensis Cry toxins with binding sites from Aedes aegypti (Diptera: Culicidae) larvae midgut. de Barros Moreira Beltrão H; Silva-Filha MH FEMS Microbiol Lett; 2007 Jan; 266(2):163-9. PubMed ID: 17132151 [TBL] [Abstract][Full Text] [Related]
69. Specific binding of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species. Hernández-Rodríguez CS; Van Vliet A; Bautsoens N; Van Rie J; Ferré J Appl Environ Microbiol; 2008 Dec; 74(24):7654-9. PubMed ID: 18931285 [TBL] [Abstract][Full Text] [Related]
70. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894 [TBL] [Abstract][Full Text] [Related]
71. Cry1Ac Protoxin and Its Activated Toxin from Qi L; Qiu X; Yang S; Li R; Wu B; Cao X; He T; Ding X; Xia L; Sun Y J Agric Food Chem; 2020 May; 68(21):5816-5824. PubMed ID: 32379448 [TBL] [Abstract][Full Text] [Related]
72. Reduction of Bacillus thuringiensis Cry1Ac toxicity against Helicoverpa armigera by a soluble toxin-binding cadherin fragment. Liu C; Wu K; Wu Y; Gao Y; Ning C; Oppert B J Insect Physiol; 2009 Aug; 55(8):686-93. PubMed ID: 19446559 [TBL] [Abstract][Full Text] [Related]
73. Synergism and antagonism between Bacillus thuringiensis Vip3A and Cry1 proteins in Heliothis virescens, Diatraea saccharalis and Spodoptera frugiperda. Lemes AR; Davolos CC; Legori PC; Fernandes OA; Ferré J; Lemos MV; Desiderio JA PLoS One; 2014; 9(9):e107196. PubMed ID: 25275646 [TBL] [Abstract][Full Text] [Related]
74. Knockout of a P-glycoprotein gene increases susceptibility to abamectin and emamectin benzoate in Spodoptera exigua. Zuo YY; Huang JL; Wang J; Feng Y; Han TT; Wu YD; Yang YH Insect Mol Biol; 2018 Feb; 27(1):36-45. PubMed ID: 28753233 [TBL] [Abstract][Full Text] [Related]
75. Genome-wide identification and comparative analysis of Cry toxin receptor families in 7 insect species with a focus on Spodoptera litura. Li Q; Li M; Zhu M; Zhong J; Wen L; Zhang J; Zhang R; Gao Q; Yu XQ; Lu Y Insect Sci; 2022 Jun; 29(3):783-800. PubMed ID: 34405540 [TBL] [Abstract][Full Text] [Related]
76. Extracellular loop structures in silkworm ABCC transporters determine their specificities for Endo H; Tanaka S; Adegawa S; Ichino F; Tabunoki H; Kikuta S; Sato R J Biol Chem; 2018 Jun; 293(22):8569-8577. PubMed ID: 29666188 [No Abstract] [Full Text] [Related]
77. Proteotranscriptomic analyses of the midgut and Malpighian tubules after a sublethal concentration of Cry1Ab exposure on Spodoptera litura. Xu YJ; Zhang YN; Xue-Yang ; Hao SP; Wang YJ; Yang XX; Shen YQ; Su Q; Xiao YD; Liu JQ; Li WS; He QH; Chen Y; Wang LL; Guo HZ; Xia QY; Mita K Pest Manag Sci; 2024 Jun; 80(6):2587-2595. PubMed ID: 38265118 [TBL] [Abstract][Full Text] [Related]
78. Characterization of the mode of action of eCry1Gb.1Ig, a fall armyworm (Spodoptera frugiperda) active protein, with a novel site of action. Zwack PJ; Wu Y; Leininger C; Williams J; Richards EE; Wood C; Wong S; Bramlett M Pestic Biochem Physiol; 2024 May; 201():105881. PubMed ID: 38685247 [TBL] [Abstract][Full Text] [Related]
79. Localization of Bacillus thuringiensis Cry1A toxin-binding molecules in gypsy moth larval gut sections using fluorescence microscopy. Valaitis AP J Invertebr Pathol; 2011 Oct; 108(2):69-75. PubMed ID: 21767544 [TBL] [Abstract][Full Text] [Related]
80. A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae. Zhang R; Hua G; Andacht TM; Adang MJ Biochemistry; 2008 Oct; 47(43):11263-72. PubMed ID: 18826260 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]