These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 28232225)

  • 1. Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance.
    Parent M; Baradari H; Champion E; Damia C; Viana-Trecant M
    J Control Release; 2017 Apr; 252():1-17. PubMed ID: 28232225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. VEGF incorporated into calcium phosphate ceramics promotes vascularisation and bone formation in vivo.
    Wernike E; Montjovent MO; Liu Y; Wismeijer D; Hunziker EB; Siebenrock KA; Hofstetter W; Klenke FM
    Eur Cell Mater; 2010 Feb; 19():30-40. PubMed ID: 20178096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds.
    Sanzana ES; Navarro M; Ginebra MP; Planell JA; Ojeda AC; Montecinos HA
    J Biomed Mater Res A; 2014 Jun; 102(6):1767-73. PubMed ID: 23813739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research development and prospect of calcium phosphate biomaterials with intrinsic osteoinductivity].
    Bao C; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Apr; 23(2):442-5, 454. PubMed ID: 16706385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ceramic drug delivery: a perspective.
    Paul W; Sharma CP
    J Biomater Appl; 2003 Apr; 17(4):253-64. PubMed ID: 12797418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model.
    Lin K; Liu Y; Huang H; Chen L; Wang Z; Chang J
    J Mater Sci Mater Med; 2015 Jun; 26(6):197. PubMed ID: 26099345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response.
    Bouler JM; Pilet P; Gauthier O; Verron E
    Acta Biomater; 2017 Apr; 53():1-12. PubMed ID: 28159720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicon-calcium phosphate ceramics and silicon-calcium phosphate cements: Substrates to customize the release of antibiotics according to the idiosyncrasies of the patient.
    Lucas-Aparicio J; Manchón Á; Rueda C; Pintado C; Torres J; Alkhraisat MH; López-Cabarcos E
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110173. PubMed ID: 31753390
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering.
    Mouriño V; Cattalini JP; Roether JA; Dubey P; Roy I; Boccaccini AR
    Expert Opin Drug Deliv; 2013 Oct; 10(10):1353-65. PubMed ID: 23777443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering.
    Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X
    Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomorphic Ceramics for Drug Delivery in Bone Tissue Regeneration.
    Diaz-Rodriguez P; Landin M
    Curr Pharm Des; 2017; 23(24):3507-3514. PubMed ID: 28521695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.
    Denry I; Kuhn LT
    Dent Mater; 2016 Jan; 32(1):43-53. PubMed ID: 26423007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic-Inorganic Composites Toward Biomaterial Application.
    Miyazaki T; Sugawara-Narutaki A; Ohtsuki C
    Front Oral Biol; 2015; 17():33-8. PubMed ID: 26201274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery.
    Trombetta R; Inzana JA; Schwarz EM; Kates SL; Awad HA
    Ann Biomed Eng; 2017 Jan; 45(1):23-44. PubMed ID: 27324800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cellular perspective to bioceramic scaffolds for bone tissue engineering: the state of the art.
    Guda T; Appleford M; Oh S; Ong JL
    Curr Top Med Chem; 2008; 8(4):290-9. PubMed ID: 18393892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do Ca2+-adsorbing ceramics reduce the release of calcium ions from gypsum-based biomaterials?
    Belcarz A; Zalewska J; Pałka K; Hajnos M; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():256-65. PubMed ID: 25492196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in synthesis of calcium phosphate crystals with controlled size and shape.
    Lin K; Wu C; Chang J
    Acta Biomater; 2014 Oct; 10(10):4071-102. PubMed ID: 24954909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study on in vitro biocompatibility of synthetic octacalcium phosphate and calcium phosphate ceramics used clinically.
    Morimoto S; Anada T; Honda Y; Suzuki O
    Biomed Mater; 2012 Aug; 7(4):045020. PubMed ID: 22740587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.