BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28232255)

  • 21. A dual constant-composition titration system as an in vitro resorption model for comparing dissolution rates of calcium phosphate biomaterials.
    Chow LC; Markovic M; Takagi S
    J Biomed Mater Res B Appl Biomater; 2003 May; 65(2):245-51. PubMed ID: 12687717
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural study of octacalcium phosphate bone cement conversion in vitro.
    Fosca M; Komlev VS; Fedotov AY; Caminiti R; Rau JV
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6202-10. PubMed ID: 23088338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carvable calcium phosphate bone substitute material.
    Hofmann MP; Gbureck U; Duncan CO; Dover MS; Barralet JE
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):1-8. PubMed ID: 17285607
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Injectable dicalcium phosphate bone cement prepared from biphasic calcium phosphate extracted from lamb bone.
    Tariq U; Hussain R; Tufail K; Haider Z; Tariq R; Ali J
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109863. PubMed ID: 31349467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Setting mechanism of a new injectable Dicalcium Phosphate Dihydrate (DCPD) forming cement.
    Ren W; Song W; Yurgelevic S; Markel DC
    J Mech Behav Biomed Mater; 2018 Mar; 79():226-234. PubMed ID: 29331590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of pullulan on the biomechanical and anti-collapse properties of dicalcium phosphate dihydrate bone cement.
    Xi W; Ding Z; Ren H; Chen H; Yan Y; Zhang Q
    J Biomater Appl; 2021 Nov; 36(5):757-771. PubMed ID: 34074159
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of bioactive PMMA bone cement via modification with methacryloxypropyltri-methoxysilane and calcium acetate.
    Mori A; Ohtsuki C; Miyazaki T; Sugino A; Tanihara M; Kuramoto K; Osaka A
    J Mater Sci Mater Med; 2005 Aug; 16(8):713-8. PubMed ID: 15965740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bulk physicochemical, interconnectivity, and mechanical properties of calcium phosphate cements-fibrin glue composites for bone substitute applications.
    Lopez-Heredia MA; Pattipeilohy J; Hsu S; Grykien M; van der Weijden B; Leeuwenburgh SC; Salmon P; Wolke JG; Jansen JA
    J Biomed Mater Res A; 2013 Feb; 101(2):478-90. PubMed ID: 22927324
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning the degradation rate of calcium phosphate cements by incorporating mixtures of polylactic-co-glycolic acid microspheres and glucono-delta-lactone microparticles.
    Sariibrahimoglu K; An J; van Oirschot BA; Nijhuis AW; Eman RM; Alblas J; Wolke JG; van den Beucken JJ; Leeuwenburgh SC; Jansen JA
    Tissue Eng Part A; 2014 Nov; 20(21-22):2870-82. PubMed ID: 24819744
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eggshell derived brushite bone cement with minimal inflammatory response and higher osteoconductive potential.
    Jayasree R; Kumar TSS; Venkateswari R; Nankar RP; Doble M
    J Mater Sci Mater Med; 2019 Oct; 30(10):113. PubMed ID: 31583477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymer--calcium phosphate cement composites for bone substitutes.
    Mickiewicz RA; Mayes AM; Knaack D
    J Biomed Mater Res; 2002 Sep; 61(4):581-92. PubMed ID: 12115448
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimization of a biomimetic bone cement: role of DCPD.
    Panzavolta S; Bracci B; Rubini K; Bigi A
    J Inorg Biochem; 2011 Aug; 105(8):1060-5. PubMed ID: 21726768
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes.
    Sanzana ES; Navarro M; Macule F; Suso S; Planell JA; Ginebra MP
    Acta Biomater; 2008 Nov; 4(6):1924-33. PubMed ID: 18539102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of four biodegradable, injectable bone cements in an experimental drill hole model in sheep.
    von Rechenberg B; Génot OR; Nuss K; Galuppo L; Fulmer M; Jacobson E; Kronen P; Zlinszky K; Auer JA
    Eur J Pharm Biopharm; 2013 Sep; 85(1):130-8. PubMed ID: 23680585
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-setting, bioactive, and biodegradable TTCP-DCPD apatite cement.
    Hamanishi C; Kitamoto K; Ohura K; Tanaka S; Doi Y
    J Biomed Mater Res; 1996 Nov; 32(3):383-9. PubMed ID: 8897143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors influencing calcium phosphate cement shelf-life.
    Gbureck U; Dembski S; Thull R; Barralet JE
    Biomaterials; 2005 Jun; 26(17):3691-7. PubMed ID: 15621259
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Injectable bioactive calcium-magnesium phosphate cement for bone regeneration.
    Wu F; Su J; Wei J; Guo H; Liu C
    Biomed Mater; 2008 Dec; 3(4):044105. PubMed ID: 19029607
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biologically mediated resorption of brushite cement in vitro.
    Grover LM; Gbureck U; Wright AJ; Tremayne M; Barralet JE
    Biomaterials; 2006 Apr; 27(10):2178-85. PubMed ID: 16337265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of composition on mechanical properties of brushite cements.
    Engstrand J; Persson C; Engqvist H
    J Mech Behav Biomed Mater; 2014 Jan; 29():81-90. PubMed ID: 24064324
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a porosity measurement method for wet calcium phosphate cements.
    Ajaxon I; Maazouz Y; Ginebra MP; Öhman C; Persson C
    J Biomater Appl; 2015 Nov; 30(5):526-36. PubMed ID: 26163278
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.