BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28232264)

  • 21. Die wall pressure measurement for evaluation of compaction property of pharmaceutical materials.
    Takeuchi H; Nagira S; Yamamoto H; Kawashima Y
    Int J Pharm; 2004 Apr; 274(1-2):131-8. PubMed ID: 15072789
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel technique for the visualization of tablet punch surfaces: Characterization of surface modification, wear and sticking.
    Al-Karawi C; Kaiser T; Leopold CS
    Int J Pharm; 2017 Sep; 530(1-2):440-454. PubMed ID: 28779987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. How suitable is the measurement of take-off forces for detection of sticking during direct compression of various ibuprofen tablet formulations?
    Saniocki I; Sakmann A; Leopold CS
    Pharm Dev Technol; 2013 Feb; 18(1):257-65. PubMed ID: 22931059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating the effect of punch geometry on high speed tableting through radial die-wall pressure monitoring.
    Abdel-Hamid S; Betz G
    Pharm Dev Technol; 2013 Feb; 18(1):46-54. PubMed ID: 21810067
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into tablet sticking: a quantitative case study with an ibuprofen and methocarbamol-based formulation.
    Dembélé M; Hudon S; Simard JS; Abatzoglou N; Gosselin R
    Pharm Dev Technol; 2023 Jan; 28(1):40-50. PubMed ID: 36594269
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigation of the tableting behavior of Ibuprofen DC 85 W.
    Al-Karawi C; Cech T; Bang F; Leopold CS
    Drug Dev Ind Pharm; 2018 Aug; 44(8):1262-1272. PubMed ID: 29499616
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining experimental design and orthogonal projections to latent structures to study the influence of microcrystalline cellulose properties on roll compaction.
    Dumarey M; Wikström H; Fransson M; Sparén A; Tajarobi P; Josefson M; Trygg J
    Int J Pharm; 2011 Sep; 416(1):110-9. PubMed ID: 21708239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of compaction pressure, speed and punch head profile on the ultrasonically-extracted physical properties of pharmaceutical compacts.
    Xu X; Coskunturk Y; Dave VS; Kuriyilel JV; Wright MF; Dave RH; Cetinkaya C
    Int J Pharm; 2020 Feb; 575():118993. PubMed ID: 31884061
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tablet compression tooling - Impact of punch face edge modification.
    Anbalagan P; Heng PWS; Liew CV
    Int J Pharm; 2017 May; 524(1-2):373-381. PubMed ID: 28389365
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multivariate analysis of relationships between material properties, process parameters and tablet tensile strength for alpha-lactose monohydrates.
    Haware RV; Tho I; Bauer-Brandl A
    Eur J Pharm Biopharm; 2009 Nov; 73(3):424-31. PubMed ID: 19698784
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of multivariate methods to compression behavior evaluation of directly compressible materials.
    Haware RV; Tho I; Bauer-Brandl A
    Eur J Pharm Biopharm; 2009 May; 72(1):148-55. PubMed ID: 19084596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Compression physics in the formulation development of tablets.
    Patel S; Kaushal AM; Bansal AK
    Crit Rev Ther Drug Carrier Syst; 2006; 23(1):1-65. PubMed ID: 16749898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a New Punch Head Shape to Replicate Scale-Up Issues on a Laboratory Tablet Press III: Replicating Sticking Phenomenon Using the SAS Punch and Evaluation by Checking the Tablet Surface Using 3-D Laser Scanning Microscope.
    Ito M; Aoki S; Uchiyama J; Yamato K
    J Pharm Sci; 2018 Aug; 107(8):2144-2151. PubMed ID: 29684408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Particle size distribution and evolution in tablet structure during and after compaction.
    Fichtner F; Rasmuson A; Alderborn G
    Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    J Pharm Sci; 2015 Dec; 104(12):4339-4344. PubMed ID: 26460539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radial die-wall pressure as a reliable tool for studying the effect of powder water activity on high speed tableting.
    Abdel-Hamid S; Betz G
    Int J Pharm; 2011 Jun; 411(1-2):152-61. PubMed ID: 21497644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of surface energy on powder compactibility.
    Fichtner F; Mahlin D; Welch K; Gaisford S; Alderborn G
    Pharm Res; 2008 Dec; 25(12):2750-9. PubMed ID: 18548337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Moisture Behavior of Pharmaceutical Powder during the Tableting Process.
    Koumbogle K; Gosselin R; Gitzhofer F; Abatzoglou N
    Pharmaceutics; 2023 Jun; 15(6):. PubMed ID: 37376100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sticking Detection by Repeated Compactions on a Single Tablet.
    Thomas J; Bui P; Zavaliangos A
    AAPS PharmSciTech; 2023 Nov; 24(8):237. PubMed ID: 37989970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties.
    Hadzović E; Betz G; Hadzidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2010 Aug; 396(1-2):53-62. PubMed ID: 20600735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.