These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 28232745)

  • 1. GIGANTEA is a co-chaperone which facilitates maturation of ZEITLUPE in the Arabidopsis circadian clock.
    Cha JY; Kim J; Kim TS; Zeng Q; Wang L; Lee SY; Kim WY; Somers DE
    Nat Commun; 2017 Feb; 8(1):3. PubMed ID: 28232745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE.
    Kim TS; Kim WY; Fujiwara S; Kim J; Cha JY; Park JH; Lee SY; Somers DE
    Proc Natl Acad Sci U S A; 2011 Oct; 108(40):16843-8. PubMed ID: 21949396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light.
    Kim WY; Fujiwara S; Suh SS; Kim J; Kim Y; Han L; David K; Putterill J; Nam HG; Somers DE
    Nature; 2007 Sep; 449(7160):356-60. PubMed ID: 17704763
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A chaperone surveillance system in plant circadian rhythms.
    Cha JY; Khaleda L; Park HJ; Kim WY
    BMB Rep; 2017 May; 50(5):235-236. PubMed ID: 28454605
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HSP90 Contributes to Entrainment of the
    Davis AM; Ronald J; Ma Z; Wilkinson AJ; Philippou K; Shindo T; Queitsch C; Davis SJ
    Genetics; 2018 Dec; 210(4):1383-1390. PubMed ID: 30337341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation.
    Martin-Tryon EL; Kreps JA; Harmer SL
    Plant Physiol; 2007 Jan; 143(1):473-86. PubMed ID: 17098855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LIP1 Regulates the Plant Circadian Oscillator by Modulating the Function of the Clock Component GIGANTEA.
    Hajdu A; Nyári D; Terecskei K; Gyula P; Ádám É; Dobos O; Mérai Z; Kozma-Bognár L
    Cells; 2024 Sep; 13(17):. PubMed ID: 39273073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partners in time: EARLY BIRD associates with ZEITLUPE and regulates the speed of the Arabidopsis clock.
    Johansson M; McWatters HG; Bakó L; Takata N; Gyula P; Hall A; Somers DE; Millar AJ; Eriksson ME
    Plant Physiol; 2011 Apr; 155(4):2108-22. PubMed ID: 21300918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-resolved interaction proteomics of the GIGANTEA protein under diurnal cycles in Arabidopsis.
    Krahmer J; Goralogia GS; Kubota A; Zardilis A; Johnson RS; Song YH; MacCoss MJ; Le Bihan T; Halliday KJ; Imaizumi T; Millar AJ
    FEBS Lett; 2019 Feb; 593(3):319-338. PubMed ID: 30536871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
    Park MJ; Kwon YJ; Gil KE; Park CM
    BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An HSP90 co-chaperone controls circadian proteostasis.
    Kim J; Somers DE
    Cell Cycle; 2017 Aug; 16(16):1483-1484. PubMed ID: 28722533
    [No Abstract]   [Full Text] [Related]  

  • 12. Sucrose and Ethylene Signaling Interact to Modulate the Circadian Clock.
    Haydon MJ; Mielczarek O; Frank A; Román Á; Webb AAR
    Plant Physiol; 2017 Oct; 175(2):947-958. PubMed ID: 28778922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time.
    Kim WY; Hicks KA; Somers DE
    Plant Physiol; 2005 Nov; 139(3):1557-69. PubMed ID: 16258016
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth.
    Norén L; Kindgren P; Stachula P; Rühl M; Eriksson ME; Hurry V; Strand Å
    Plant Physiol; 2016 Jun; 171(2):1392-406. PubMed ID: 27208227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The F-box protein ZEITLUPE controls stability and nucleocytoplasmic partitioning of GIGANTEA.
    Kim J; Geng R; Gallenstein RA; Somers DE
    Development; 2013 Oct; 140(19):4060-9. PubMed ID: 24004949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RFI2, a RING-domain zinc finger protein, negatively regulates CONSTANS expression and photoperiodic flowering.
    Chen M; Ni M
    Plant J; 2006 Jun; 46(5):823-33. PubMed ID: 16709197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted degradation of PSEUDO-RESPONSE REGULATOR5 by an SCFZTL complex regulates clock function and photomorphogenesis in Arabidopsis thaliana.
    Kiba T; Henriques R; Sakakibara H; Chua NH
    Plant Cell; 2007 Aug; 19(8):2516-30. PubMed ID: 17693530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Necdin regulates BMAL1 stability and circadian clock through SGT1-HSP90 chaperone machinery.
    Lu R; Dong Y; Li JD
    Nucleic Acids Res; 2020 Aug; 48(14):7944-7957. PubMed ID: 32667666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein quality control is essential for the circadian clock in plants.
    Gil KE; Park CM
    Plant Signal Behav; 2017 Dec; 12(12):e1407019. PubMed ID: 29172942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana.
    Nakamichi N; Kita M; Ito S; Yamashino T; Mizuno T
    Plant Cell Physiol; 2005 May; 46(5):686-98. PubMed ID: 15767265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.