These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28232911)

  • 1. Structural Basis of the Substrate Specificity and Enzyme Catalysis of a
    Guan H; Song S; Robinson H; Liang J; Ding H; Li J; Han Q
    Front Mol Biosci; 2017; 4():5. PubMed ID: 28232911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of a substrate-specifying residue within Papaver somniferum and Catharanthus roseus aromatic amino acid decarboxylases.
    Torrens-Spence MP; Lazear M; von Guggenberg R; Ding H; Li J
    Phytochemistry; 2014 Oct; 106():37-43. PubMed ID: 25107664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active-Site Oxygen Accessibility and Catalytic Loop Dynamics of Plant Aromatic Amino Acid Decarboxylases from Molecular Simulations.
    Gou Y; Li T; Wang Y
    Biochemistry; 2024 Aug; 63(15):1980-1990. PubMed ID: 39008055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy.
    Facchini PJ; De Luca V
    J Biol Chem; 1994 Oct; 269(43):26684-90. PubMed ID: 7929401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structures clarify cofactor binding of plant tyrosine decarboxylase.
    Wang H; Yu J; Satoh Y; Nakagawa Y; Tanaka R; Kato K; Yao M
    Biochem Biophys Res Commun; 2020 Mar; 523(2):500-505. PubMed ID: 31898973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases.
    Torrens-Spence MP; Liu P; Ding H; Harich K; Gillaspy G; Li J
    J Biol Chem; 2013 Jan; 288(4):2376-87. PubMed ID: 23204519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for divergent and convergent evolution of catalytic machineries in plant aromatic amino acid decarboxylase proteins.
    Torrens-Spence MP; Chiang YC; Smith T; Vicent MA; Wang Y; Weng JK
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10806-10817. PubMed ID: 32371491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoamine Biosynthesis via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom.
    Torrens-Spence MP; Liu CT; Pluskal T; Chung YK; Weng JK
    ACS Chem Biol; 2018 Dec; 13(12):3343-3353. PubMed ID: 30484626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation, and metabolic engineering applications.
    Facchini PJ; Huber-Allanach KL; Tari LW
    Phytochemistry; 2000 May; 54(2):121-38. PubMed ID: 10872203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of a new member of the opium poppy tyrosine/3,4-dihydroxyphenylalanine decarboxylase gene family.
    Maldonado-Mendoza IE; López-Meyer M; Galef JR; Burnett RJ; Nessler CL
    Plant Physiol; 1996 Jan; 110(1):43-9. PubMed ID: 8587993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retraction: Structural Basis of the Substrate Specificity and Enzyme Catalysis of a
    Frontiers Editorial Office
    Front Mol Biosci; 2017; 4():69. PubMed ID: 28975129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression patterns conferred by tyrosine/dihydroxyphenylalanine decarboxylase promoters from opium poppy are conserved in transgenic tobacco.
    Facchini PJ; Penzes-Yost C; Samanani N; Kowalchuk B
    Plant Physiol; 1998 Sep; 118(1):69-81. PubMed ID: 9733527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal Structure of d-Ornithine/d-Lysine Decarboxylase, a Stereoinverting Decarboxylase: Implications for Substrate Specificity and Stereospecificity of Fold III Decarboxylases.
    Phillips RS; Poteh P; Krajcovic D; Miller KA; Hoover TR
    Biochemistry; 2019 Feb; 58(8):1038-1042. PubMed ID: 30699288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biochemical evaluation of a parsley tyrosine decarboxylase results in a novel 4-hydroxyphenylacetaldehyde synthase enzyme.
    Torrens-Spence MP; Gillaspy G; Zhao B; Harich K; White RH; Li J
    Biochem Biophys Res Commun; 2012 Feb; 418(2):211-6. PubMed ID: 22266321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases.
    Sandmeier E; Hale TI; Christen P
    Eur J Biochem; 1994 May; 221(3):997-1002. PubMed ID: 8181483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression in Escherichia coli and partial characterization of two tyrosine/dopa decarboxylases from opium poppy.
    Facchini PJ; De Luca V
    Phytochemistry; 1995 Mar; 38(5):1119-26. PubMed ID: 7766394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New Insights Emerging from Recent Investigations on Human Group II Pyridoxal 5'-Phosphate Decarboxylases.
    Paiardini A; Giardina G; Rossignoli G; Voltattorni CB; Bertoldi M
    Curr Med Chem; 2017; 24(3):226-244. PubMed ID: 27881066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decreased cell wall digestibility in canola transformed with chimeric tyrosine decarboxylase genes from opium poppy.
    Facchini PJ; Yu M; Penzes-Yost C
    Plant Physiol; 1999 Jul; 120(3):653-64. PubMed ID: 10398700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncoupled defense gene expression and antimicrobial alkaloid accumulation in elicited opium poppy cell cultures.
    Facchini PJ; Johnson AG; Poupart J; de Luca V
    Plant Physiol; 1996 Jul; 111(3):687-97. PubMed ID: 8754678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for substrate specificity of meso-diaminopimelic acid decarboxylase from Corynebacterium glutamicum.
    Son HF; Kim KJ
    Biochem Biophys Res Commun; 2018 Jan; 495(2):1815-1821. PubMed ID: 29233695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.