These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 28232986)

  • 1. Lab-on-a-chip mRNA purification and reverse transcription via a solid-phase gene extraction technique.
    Nestorova GG; Hasenstein K; Nguyen N; DeCoster MA; Crews ND
    Lab Chip; 2017 Mar; 17(6):1128-1136. PubMed ID: 28232986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-domain microchip-based process for volume reduction solid phase extraction of nucleic acids from dilute, large volume biological samples.
    Reedy CR; Hagan KA; Strachan BC; Higginson JJ; Bienvenue JM; Greenspoon SA; Ferrance JP; Landers JP
    Anal Chem; 2010 Jul; 82(13):5669-78. PubMed ID: 20527816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid phase DNA extraction on PDMS and direct amplification.
    Pasquardini L; Potrich C; Quaglio M; Lamberti A; Guastella S; Lunelli L; Cocuzza M; Vanzetti L; Pirri CF; Pederzolli C
    Lab Chip; 2011 Dec; 11(23):4029-35. PubMed ID: 21989780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. OncomiR detection in circulating body fluids: a PDMS microdevice perspective.
    Potrich C; Vaghi V; Lunelli L; Pasquardini L; Santini GC; Ottone C; Quaglio M; Cocuzza M; Pirri CF; Ferracin M; Negrini M; Tiberio P; De Sanctis V; Bertorelli R; Pederzolli C
    Lab Chip; 2014 Oct; 14(20):4067-75. PubMed ID: 25178053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-efficiency single-cell entrapment and fluorescence in situ hybridization analysis using a poly(dimethylsiloxane) microfluidic device integrated with a black poly(ethylene terephthalate) micromesh.
    Matsunaga T; Hosokawa M; Arakaki A; Taguchi T; Mori T; Tanaka T; Takeyama H
    Anal Chem; 2008 Jul; 80(13):5139-45. PubMed ID: 18537270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rotary microsystem for simple, rapid and automatic RNA purification.
    Park BH; Jung JH; Zhang H; Lee NY; Seo TS
    Lab Chip; 2012 Oct; 12(20):3875-81. PubMed ID: 22864412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microchip-based solid-phase purification of RNA from biological samples.
    Hagan KA; Bienvenue JM; Moskaluk CA; Landers JP
    Anal Chem; 2008 Nov; 80(22):8453-60. PubMed ID: 18855414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in PDMS surface modification for microfluidic devices.
    Zhou J; Ellis AV; Voelcker NH
    Electrophoresis; 2010 Jan; 31(1):2-16. PubMed ID: 20039289
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of 2-[18F]fluoro-2-deoxy-d-glucose by on-chip solid-phase extraction.
    Tarn MD; Pascali G; De Leonardis F; Watts P; Salvadori PA; Pamme N
    J Chromatogr A; 2013 Mar; 1280():117-21. PubMed ID: 23375767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance.
    Wu H; Zhai J; Tian Y; Lu H; Wang X; Jia W; Liu B; Yang P; Xu Y; Wang H
    Lab Chip; 2004 Dec; 4(6):588-97. PubMed ID: 15570370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan-coated silica as a solid phase for RNA purification in a microfluidic device.
    Hagan KA; Meier WL; Ferrance JP; Landers JP
    Anal Chem; 2009 Jul; 81(13):5249-56. PubMed ID: 19514712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ mRNA isolation from a microfluidic single-cell array using an external AFM nanoprobe.
    Li X; Tao Y; Lee DH; Wickramasinghe HK; Lee AP
    Lab Chip; 2017 May; 17(9):1635-1644. PubMed ID: 28401227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types.
    Gan W; Zhuang B; Zhang P; Han J; Li CX; Liu P
    Lab Chip; 2014 Oct; 14(19):3719-28. PubMed ID: 25070548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring cell secretions on microfluidic chips using solid-phase extraction with mass spectrometry.
    Dugan CE; Grinias JP; Parlee SD; El-Azzouny M; Evans CR; Kennedy RT
    Anal Bioanal Chem; 2017 Jan; 409(1):169-178. PubMed ID: 27761614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid phase gene extraction isolates mRNA at high spatial and temporal resolution.
    Scherp P; Hasenstein KH
    Biotechniques; 2008 Aug; 45(2):172-8. PubMed ID: 18687066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid phase DNA extraction with a flexible bead-packed microfluidic device to detect methicillin-resistant Staphylococcus aureus in nasal swabs.
    Hwang KY; Kwon SH; Jung SO; Namkoong K; Jung WJ; Kim JH; Suh KY; Huh N
    Anal Chem; 2012 Sep; 84(18):7912-8. PubMed ID: 22908991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A miniature quantitative PCR device for directly monitoring a sample processing on a microfluidic rapid DNA system.
    Hurth C; Yang J; Barrett M; Brooks C; Nordquist A; Smith S; Zenhausern F
    Biomed Microdevices; 2014 Dec; 16(6):905-14. PubMed ID: 25106501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lab-on-a-chip system integrating tissue sample preparation and multiplex RT-qPCR for gene expression analysis in point-of-care hepatotoxicity assessment.
    Lim GS; Chang JS; Lei Z; Wu R; Wang Z; Cui K; Wong S
    Lab Chip; 2015 Oct; 15(20):4032-43. PubMed ID: 26329655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic Analysis of Different Cell Spheroids with a Microfluidic Device Using Scanning Electrochemical Microscopy and Gene Expression Profiling.
    Zhao L; Shi M; Liu Y; Zheng X; Xiu J; Liu Y; Tian L; Wang H; Zhang M; Zhang X
    Anal Chem; 2019 Apr; 91(7):4307-4311. PubMed ID: 30869520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.