These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 28233276)

  • 1. Anti-Cancer Drug Validation: the Contribution of Tissue Engineered Models.
    Carvalho MR; Lima D; Reis RL; Oliveira JM; Correlo VM
    Stem Cell Rev Rep; 2017 Jun; 13(3):347-363. PubMed ID: 28233276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tissue-engineered models of human tumors for cancer research.
    Villasante A; Vunjak-Novakovic G
    Expert Opin Drug Discov; 2015 Mar; 10(3):257-68. PubMed ID: 25662589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined tissue-engineered/in silico signature tool patient stratification in lung cancer.
    Göttlich C; Kunz M; Zapp C; Nietzer SL; Walles H; Dandekar T; Dandekar G
    Mol Oncol; 2018 Aug; 12(8):1264-1285. PubMed ID: 29797762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Culture Systems and 3D Interfaces Models for Cancer Drugs Testing.
    Fernandes DC; Canadas RF; Reis RL; Oliveira JM
    Adv Exp Med Biol; 2020; 1230():137-159. PubMed ID: 32285369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.
    Kong D; Yamori T
    Bioorg Med Chem; 2012 Mar; 20(6):1947-51. PubMed ID: 22336246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.
    Amoedo ND; Obre E; Rossignol R
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preclinical three-dimensional colorectal cancer model: The next generation of in vitro drug efficacy evaluation.
    Sensi F; D'Angelo E; D'Aronco S; Molinaro R; Agostini M
    J Cell Physiol; 2018 Jan; 234(1):181-191. PubMed ID: 30277557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tissue-engineered 3D melanoma model with blood and lymphatic capillaries for drug development.
    Bourland J; Fradette J; Auger FA
    Sci Rep; 2018 Sep; 8(1):13191. PubMed ID: 30181613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering in vitro immune-competent tissue models for testing and evaluation of therapeutics.
    Hammel JH; Zatorski JM; Cook SR; Pompano RR; Munson JM
    Adv Drug Deliv Rev; 2022 Mar; 182():114111. PubMed ID: 35031388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered microenvironments provide new insights into ovarian and prostate cancer progression and drug responses.
    Loessner D; Holzapfel BM; Clements JA
    Adv Drug Deliv Rev; 2014 Dec; 79-80():193-213. PubMed ID: 24969478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-Scale Gene Expression Profiling Platform for Identification of Context-Dependent Drug Responses in Multicellular Tumor Spheroids.
    Senkowski W; Jarvius M; Rubin J; Lengqvist J; Gustafsson MG; Nygren P; Kultima K; Larsson R; Fryknäs M
    Cell Chem Biol; 2016 Nov; 23(11):1428-1438. PubMed ID: 27984028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of anti-cancer agents in cell lines versus human primary tumour tissue.
    Cree IA; Glaysher S; Harvey AL
    Curr Opin Pharmacol; 2010 Aug; 10(4):375-9. PubMed ID: 20570561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance.
    Breslin S; O'Driscoll L
    Oncotarget; 2016 Jul; 7(29):45745-45756. PubMed ID: 27304190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensionally engineered biomimetic tissue models for in vitro drug evaluation: delivery, efficacy and toxicity.
    Peck Y; Wang DA
    Expert Opin Drug Deliv; 2013 Mar; 10(3):369-83. PubMed ID: 23289593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental Phases of Anticancer Screening Models.
    Alsamman K; El-Masry OS
    Comb Chem High Throughput Screen; 2017; 20(5):440-450. PubMed ID: 28025935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening.
    Heylman C; Sobrino A; Shirure VS; Hughes CC; George SC
    Exp Biol Med (Maywood); 2014 Sep; 239(9):1240-54. PubMed ID: 24740872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue-engineered 3D tumor angiogenesis models: potential technologies for anti-cancer drug discovery.
    Chwalek K; Bray LJ; Werner C
    Adv Drug Deliv Rev; 2014 Dec; 79-80():30-9. PubMed ID: 24819220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of animal models in cancer drug discovery and development.
    Curt GA
    Stem Cells; 1994 Jan; 12(1):23-9. PubMed ID: 8142918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-cell-derived organoids as a new ex vivo model for drug assays in oncology.
    Mebarki M; Bennaceur A; Bonhomme-Faivre L
    Drug Discov Today; 2018 Apr; 23(4):857-863. PubMed ID: 29428171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.