These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 28233410)

  • 1. Conformational energy range of ligands in protein crystal structures: The difficult quest for accurate understanding.
    Peach ML; Cachau RE; Nicklaus MC
    J Mol Recognit; 2017 Aug; 30(8):. PubMed ID: 28233410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FlexE: efficient molecular docking considering protein structure variations.
    Claussen H; Buning C; Rarey M; Lengauer T
    J Mol Biol; 2001 Apr; 308(2):377-95. PubMed ID: 11327774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy penalties enhance flexible receptor docking in a model cavity.
    Kamenik AS; Singh I; Lak P; Balius TE; Liedl KR; Shoichet BK
    Proc Natl Acad Sci U S A; 2021 Sep; 118(36):. PubMed ID: 34475217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring ligand dynamics in protein crystal structures with ensemble refinement.
    Caldararu O; Ekberg V; Logan DT; Oksanen E; Ryde U
    Acta Crystallogr D Struct Biol; 2021 Aug; 77(Pt 8):1099-1115. PubMed ID: 34342282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational energy penalties of protein-bound ligands.
    Boström J; Norrby PO; Liljefors T
    J Comput Aided Mol Des; 1998 Jul; 12(4):383-96. PubMed ID: 9777496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving ligand 3D shape similarity-based pose prediction with a continuum solvent model.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Dec; 33(12):1045-1055. PubMed ID: 31463704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.
    Janowski PA; Moriarty NW; Kelley BP; Case DA; York DM; Adams PD; Warren GL
    Acta Crystallogr D Struct Biol; 2016 Sep; 72(Pt 9):1062-72. PubMed ID: 27599738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational variability of benzamidinium-based inhibitors.
    Li X; He X; Wang B; Merz K
    J Am Chem Soc; 2009 Jun; 131(22):7742-54. PubMed ID: 19435349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The critical role of QM/MM X-ray refinement and accurate tautomer/protomer determination in structure-based drug design.
    Borbulevych OY; Martin RI; Westerhoff LM
    J Comput Aided Mol Des; 2021 Apr; 35(4):433-451. PubMed ID: 33108589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein conformational flexibility modulates kinetics and thermodynamics of drug binding.
    Amaral M; Kokh DB; Bomke J; Wegener A; Buchstaller HP; Eggenweiler HM; Matias P; Sirrenberg C; Wade RC; Frech M
    Nat Commun; 2017 Dec; 8(1):2276. PubMed ID: 29273709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of Homology Modeling Assisted Molecular Docking in G-protein Coupled Receptors.
    Bhunia SS; Saxena AK
    Curr Top Med Chem; 2021; 21(4):269-294. PubMed ID: 32901584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges in the determination of the binding modes of non-standard ligands in X-ray crystal complexes.
    Malde AK; Mark AE
    J Comput Aided Mol Des; 2011 Jan; 25(1):1-12. PubMed ID: 21053051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structures of the recombinant kringle 1 domain of human plasminogen in complexes with the ligands epsilon-aminocaproic acid and trans-4-(aminomethyl)cyclohexane-1-carboxylic Acid.
    Mathews II; Vanderhoff-Hanaver P; Castellino FJ; Tulinsky A
    Biochemistry; 1996 Feb; 35(8):2567-76. PubMed ID: 8611560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo loop refinement and virtual screening of the thyroid-stimulating hormone receptor transmembrane domain.
    Ali MR; Latif R; Davies TF; Mezei M
    J Biomol Struct Dyn; 2015; 33(5):1140-52. PubMed ID: 25012978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3.
    Kumar A; Zhang KYJ
    J Comput Aided Mol Des; 2019 Jan; 33(1):47-59. PubMed ID: 30084081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring Ligand Stability in Protein Crystal Structures Using Binding Pose Metadynamics.
    Fusani L; Palmer DS; Somers DO; Wall ID
    J Chem Inf Model; 2020 Mar; 60(3):1528-1539. PubMed ID: 31910338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.
    Takemura K; Guo H; Sakuraba S; Matubayasi N; Kitao A
    J Chem Phys; 2012 Dec; 137(21):215105. PubMed ID: 23231264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational analysis of macrocycles: comparing general and specialized methods.
    Olanders G; Alogheli H; Brandt P; Karlén A
    J Comput Aided Mol Des; 2020 Mar; 34(3):231-252. PubMed ID: 31965404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energetics of the cleft closing transition and the role of electrostatic interactions in conformational rearrangements of the glutamate receptor ligand binding domain.
    Mamonova T; Yonkunas MJ; Kurnikova MG
    Biochemistry; 2008 Oct; 47(42):11077-85. PubMed ID: 18823129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.