BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28233758)

  • 1. Effect of citric acid on setting reaction and tissue response to β-TCP granular cement.
    Fukuda N; Tsuru K; Mori Y; Ishikawa K
    Biomed Mater; 2017 Feb; 12(1):015027. PubMed ID: 28233758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of acidic calcium phosphate concentration on setting reaction and tissue response to β-tricalcium phosphate granular cement.
    Fukuda N; Ishikawa K; Akita K; Kamada K; Kurio N; Mori Y; Miyamoto Y
    J Biomed Mater Res B Appl Biomater; 2020 Jan; 108(1):22-29. PubMed ID: 30884116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of self-setting β-TCP granular cement using β-TCP granules and sodium hydrogen sulfate solution.
    Eddy ; Tsuchiya A; Tsuru K; Ishikawa K
    J Biomater Appl; 2018 Nov; 33(5):630-636. PubMed ID: 30376757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of self-setting β-tricalcium phosphate granular cement.
    Fukuda N; Tsuru K; Mori Y; Ishikawa K
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):800-807. PubMed ID: 28370963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of dicalcium phosphate dihydrate-coated β-TCP granules and evaluation of their osteoconductivity using experimental rats.
    Shariff KA; Tsuru K; Ishikawa K
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():1411-1419. PubMed ID: 28415432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.
    Alge DL; Santa Cruz G; Goebel WS; Chu TM
    Biomed Mater; 2009 Apr; 4(2):025016. PubMed ID: 19349655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of composition on mechanical properties of brushite cements.
    Engstrand J; Persson C; Engqvist H
    J Mech Behav Biomed Mater; 2014 Jan; 29():81-90. PubMed ID: 24064324
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep.
    Bohner M; Theiss F; Apelt D; Hirsiger W; Houriet R; Rizzoli G; Gnos E; Frei C; Auer JA; von Rechenberg B
    Biomaterials; 2003 Sep; 24(20):3463-74. PubMed ID: 12809775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of interconnected porous β-tricalcium phosphate (β-TCP) based on a setting reaction of β-TCP granules with HNO
    Ishikawa K; Putri TS; Tsuchiya A; Tanaka K; Tsuru K
    J Biomed Mater Res A; 2018 Mar; 106(3):797-804. PubMed ID: 29105999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A ready-to-use acidic, brushite-forming calcium phosphate cement.
    Luo J; Engqvist H; Persson C
    Acta Biomater; 2018 Nov; 81():304-314. PubMed ID: 30291976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vertical bone augmentation with granulated brushite cement set in glycolic acid.
    Mariño FT; Torres J; Tresguerres I; Jerez LB; Cabarcos EL
    J Biomed Mater Res A; 2007 Apr; 81(1):93-102. PubMed ID: 17109427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of calcium phosphate cement using chitosan and citric acid for bone substitute materials.
    Yokoyama A; Yamamoto S; Kawasaki T; Kohgo T; Nakasu M
    Biomaterials; 2002 Feb; 23(4):1091-101. PubMed ID: 11791912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Fabrication of arbitrarily shaped carbonate apatite foam based on the interlocking process of dicalcium hydrogen phosphate dihydrate".
    Sugiura Y; Tsuru K; Ishikawa K
    J Mater Sci Mater Med; 2017 Aug; 28(8):122. PubMed ID: 28689353
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of poly (lactide-co-glycolide) (PLGA)-coated beta-tricalcium phosphate on the healing of rat calvarial bone defects: a comparative study with pure-phase beta-tricalcium phosphate.
    Bizenjima T; Takeuchi T; Seshima F; Saito A
    Clin Oral Implants Res; 2016 Nov; 27(11):1360-1367. PubMed ID: 26748831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic study of citric acid influence on calcium phosphate bone cements as water-reducing agent.
    Sarda S; Fernández E; Nilsson M; Balcells M; Planell JA
    J Biomed Mater Res; 2002 Sep; 61(4):653-9. PubMed ID: 12115456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Setting mechanism of a new injectable Dicalcium Phosphate Dihydrate (DCPD) forming cement.
    Ren W; Song W; Yurgelevic S; Markel DC
    J Mech Behav Biomed Mater; 2018 Mar; 79():226-234. PubMed ID: 29331590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of additives on the rheological properties and injectability of a calcium phosphate bone substitute material.
    Wang X; Ye J; Wang H
    J Biomed Mater Res B Appl Biomater; 2006 Aug; 78(2):259-64. PubMed ID: 16362962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of DCPD cement chemistry on degradation properties and cytocompatibility: comparison of MCPM/β-TCP and MCPM/HA formulations.
    Alge DL; Goebel WS; Chu TM
    Biomed Mater; 2013 Apr; 8(2):025010. PubMed ID: 23428798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly bioactive bone cement microspheres based on α-tricalcium phosphate microparticles/mesoporous bioactive glass nanoparticles: Formulation, physico-chemical characterization and in vivo bone regeneration.
    El-Fiqi A; Kim JH; Kim HW
    Colloids Surf B Biointerfaces; 2022 Sep; 217():112650. PubMed ID: 35763895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of interconnected pore forming α-tricalcium phosphate foam granules cement.
    Shariff KA; Tsuru K; Ishikawa K
    J Biomater Appl; 2016 Jan; 30(6):838-45. PubMed ID: 26329353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.