BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 28233979)

  • 1. Shape-Dependent Photocatalytic Activity of Hydrothermally Synthesized Cadmium Sulfide Nanostructures.
    Kundu J; Khilari S; Pradhan D
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9669-9680. PubMed ID: 28233979
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Nanorods to Nanowires of CdS Synthesized by a Solvothermal Method: Influence of the Morphology on the Photoactivity for Hydrogen Evolution from Water.
    Vaquero F; G Fierro JL; Navarro Yerga RM
    Molecules; 2016 Mar; 21(4):401. PubMed ID: 27023502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies.
    Kundu J; Pradhan D
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):1823-34. PubMed ID: 24437513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hierarchical Layered WS2 /Graphene-Modified CdS Nanorods for Efficient Photocatalytic Hydrogen Evolution.
    Xiang Q; Cheng F; Lang D
    ChemSusChem; 2016 May; 9(9):996-1002. PubMed ID: 27059296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A facile template-free approach for the large-scale solid-phase synthesis of CdS nanostructures and their excellent photocatalytic performance.
    Apte SK; Garaje SN; Mane GP; Vinu A; Naik SD; Amalnerkar DP; Kale BB
    Small; 2011 Apr; 7(7):957-64. PubMed ID: 21387556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrothermal synthesis of CdS nanorods anchored on α-Fe
    Lei R; Ni H; Chen R; Gu H; Zhang B; Zhan W
    J Colloid Interface Sci; 2018 Mar; 514():496-506. PubMed ID: 29289732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amorphous Co₃O₄ modified CdS nanorods with enhanced visible-light photocatalytic H₂-production activity.
    Yuan J; Wen J; Gao Q; Chen S; Li J; Li X; Fang Y
    Dalton Trans; 2015 Jan; 44(4):1680-9. PubMed ID: 25438161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Architectural control syntheses of CdS and CdSe nanoflowers, branched nanowires, and nanotrees via a solvothermal approach in a mixed solution and their photocatalytic property.
    Yao WT; Yu SH; Liu SJ; Chen JP; Liu XM; Li FQ
    J Phys Chem B; 2006 Jun; 110(24):11704-10. PubMed ID: 16800466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured CdS sensitized CdWO
    Sethi YA; Panmand RP; Kadam SR; Kulkarni AK; Apte SK; Naik SD; Munirathnam N; Kulkarni MV; Kale BB
    J Colloid Interface Sci; 2017 Feb; 487():504-512. PubMed ID: 27816869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced visible light activated hydrogen evolution activity over cadmium sulfide nanorods by the synergetic effect of a thin carbon layer and noble metal-free nickel phosphide cocatalyst.
    Wu T; Wang P; Ao Y; Wang C
    J Colloid Interface Sci; 2018 Sep; 525():107-114. PubMed ID: 29689414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable hydrogen generation from vermiculite sensitized by CdS quantum dot photocatalytic splitting of water under visible-light irradiation.
    Zhang J; Zhu W; Liu X
    Dalton Trans; 2014 Jun; 43(24):9296-302. PubMed ID: 24819860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Growth and Bandstructure Properties of One Dimensional Cadmium Sulfide Nanorods for Visible Photocatalytic Hydrogen Evolution Reaction.
    Chava RK; Son N; Kim YS; Kang M
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32230877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One dimensional CdS nanowire@TiO2 nanoparticles core-shell as high performance photocatalyst for fast degradation of dye pollutants under visible and sunlight irradiation.
    Arabzadeh A; Salimi A
    J Colloid Interface Sci; 2016 Oct; 479():43-54. PubMed ID: 27348482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and application of CdS nanorods for LED-based photocatalytic degradation of tetracycline antibiotic.
    Das S; Ahn YH
    Chemosphere; 2022 Mar; 291(Pt 2):132870. PubMed ID: 34774615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical TiO2/CdS "spindle-like" composite with high photodegradation and antibacterial capability under visible light irradiation.
    Gao P; Liu J; Zhang T; Sun DD; Ng W
    J Hazard Mater; 2012 Aug; 229-230():209-16. PubMed ID: 22717065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine.
    Wang Q; Lian J; Li J; Wang R; Huang H; Su B; Lei Z
    Sci Rep; 2015 Sep; 5():13593. PubMed ID: 26337119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterostructured WS
    Reddy DA; Park H; Ma R; Kumar DP; Lim M; Kim TK
    ChemSusChem; 2017 Apr; 10(7):1563-1570. PubMed ID: 28121391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Titanium dioxide and cadmium sulfide co-sensitized graphitic carbon nitride nanosheets composite photocatalysts with superior performance in phenol degradation under visible-light irradiation.
    Yao J; Chen H; Jiang F; Jiao Z; Jin M
    J Colloid Interface Sci; 2017 Mar; 490():154-162. PubMed ID: 27912113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of one-dimensional CdS@TiO₂ core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO₂ shell.
    Liu S; Zhang N; Tang ZR; Xu YJ
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6378-85. PubMed ID: 23131118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron microscopy study of exotic nanostructures of cadmium sulfide.
    Dong L; Jiao J
    Microsc Microanal; 2005 Apr; 11(2):116-23. PubMed ID: 15817140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.