BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28234306)

  • 1. Enrichment and Purification of Casein Glycomacropeptide from Whey Protein Isolate Using Supercritical Carbon Dioxide Processing and Membrane Ultrafiltration.
    Bonnaillie LM; Qi P; Wickham E; Tomasula PM
    Foods; 2014 Jan; 3(1):94-109. PubMed ID: 28234306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractionation of whey protein isolate with supercritical carbon dioxide-process modeling and cost estimation.
    Yver AL; Bonnaillie LM; Yee W; McAloon A; Tomasula PM
    Int J Mol Sci; 2012; 13(1):240-59. PubMed ID: 22312250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractionation of whey protein isolate with supercritical carbon dioxide to produce enriched α-lactalbumin and β-lactoglobulin food ingredients.
    Bonnaillie LM; Tomasula PM
    J Agric Food Chem; 2012 May; 60(20):5257-66. PubMed ID: 22559165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process steps for the preparation of purified fractions of alpha-lactalbumin and beta-lactoglobulin from whey protein concentrates.
    Gésan-Guiziou G; Daufin G; Timmer M; Allersma D; van der Horst C
    J Dairy Res; 1999 May; 66(2):225-36. PubMed ID: 10376243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Separation of α-Lactalbumin-Enriched Fractions from Caprine and Ovine Native Whey Concentrate by Combining Membrane and High-Pressure Processing.
    Romo M; Castellari M; Bou R; Gou P; Felipe X
    Foods; 2023 Jul; 12(14):. PubMed ID: 37509780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of the response surface methodology for optimization of whey protein partitioning in PEG/phosphate aqueous two-phase system.
    Alcântara LA; Minim LA; Minim VP; Bonomo RC; da Silva LH; da Silva Mdo C
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Jul; 879(21):1881-5. PubMed ID: 21621485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of commercially available, wide-pore ultrafiltration membranes for production of α-lactalbumin-enriched whey protein concentrate.
    Marella C; Muthukumarappan K; Metzger LE
    J Dairy Sci; 2011 Mar; 94(3):1165-75. PubMed ID: 21338782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of casein as a binding ligand protein for purification of alpha-lactalbumin from beta-lactoglobulin under high hydrostatic pressure.
    Marciniak A; Suwal S; Brisson G; Britten M; Pouliot Y; Doyen A
    Food Chem; 2019 Mar; 275():193-196. PubMed ID: 30724187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanotubular structures developed from whey-based α-lactalbumin fractions for food applications.
    Tarhan O; Harsa S
    Biotechnol Prog; 2014; 30(6):1301-10. PubMed ID: 25079253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whey protein concentrates and isolates: processing and functional properties.
    Morr CV; Ha EY
    Crit Rev Food Sci Nutr; 1993; 33(6):431-76. PubMed ID: 8216810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chymotrypsin selectively digests β-lactoglobulin in whey protein isolate away from enzyme optimal conditions: potential for native α-lactalbumin purification.
    Lisak K; Toro-Sierra J; Kulozik U; Božanić R; Cheison SC
    J Dairy Res; 2013 Feb; 80(1):14-20. PubMed ID: 23317562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of α-Lactalbumin Enriched Fraction from Bovine Native Whey Concentrate by Combining Membrane and High-Pressure Processing.
    Romo M; Castellari M; Fartdinov D; Felipe X
    Foods; 2023 Jan; 12(3):. PubMed ID: 36766009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency of removal of whey protein from sweet whey using polymeric microfiltration membranes.
    Carter B; DiMarzo L; Pranata J; Barbano DM; Drake M
    J Dairy Sci; 2021 Aug; 104(8):8630-8643. PubMed ID: 34099299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of highly purified fractions of α-lactalbumin and β-lactoglobulin from cheese whey using high hydrostatic pressure.
    Marciniak A; Suwal S; Touhami S; Chamberland J; Pouliot Y; Doyen A
    J Dairy Sci; 2020 Sep; 103(9):7939-7950. PubMed ID: 32622608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of heat-induced aggregates of beta-lactoglobulin, alpha-lactalbumin and bovine serum albumin in a whey protein concentrate environment.
    Havea P; Singh H; Creamer LK
    J Dairy Res; 2001 Aug; 68(3):483-97. PubMed ID: 11694050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High pressure-induced denaturation of alpha-lactalbumin and beta-lactoglobulin in bovine milk and whey: a possible mechanism.
    Huppertz T; Fox PF; Kelly AL
    J Dairy Res; 2004 Nov; 71(4):489-95. PubMed ID: 15605716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of heat-induced whey protein denaturation and aggregation in skim milks with adjusted whey protein concentration.
    Oldfield DJ; Singh H; Taylor MW
    J Dairy Res; 2005 Aug; 72(3):369-78. PubMed ID: 16174369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the Use of a Modified High-Temperature, Short-Time Continuous Heat Exchanger with Extended Holding Time (HTST-EHT) for Thermal Inactivation of Trypsin Following Selective Enzymatic Hydrolysis of the β-Lactoglobulin Fraction in Whey Protein Isolate.
    Sáez L; Murphy E; FitzGerald RJ; Kelly P
    Foods; 2019 Aug; 8(9):. PubMed ID: 31455046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced functionalities of whey proteins treated with supercritical carbon dioxide.
    Zhong Q; Jin M
    J Dairy Sci; 2008 Feb; 91(2):490-9. PubMed ID: 18218735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Caseinomacropeptide behaviour in a whey protein fractionation process based on α-lactalbumin precipitation.
    Fernández A; Menéndez V; Riera FA; Álvarez R
    J Dairy Res; 2011 May; 78(2):196-202. PubMed ID: 21411034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.