These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 28234422)

  • 1. Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer.
    Zhao X; Liu S; Niu J; Liao L; Liu Q; Xiao X; Lv H; Long S; Banerjee W; Li W; Si S; Liu M
    Small; 2017 Sep; 13(35):. PubMed ID: 28234422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of dysprosium and lutetium metal buffer layers on the resistive switching characteristics of Cu-Sn alloy-based conductive-bridge random access memory.
    Vishwanath SK; Woo H; Jeon S
    Nanotechnology; 2018 Sep; 29(38):385207. PubMed ID: 29911987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rational Design on Controllable Cation Injection with Improved Conductive-Bridge Random Access Memory by Glancing Angle Deposition Technology toward Neuromorphic Application.
    Shih YC; Shen YC; Cheng YK; Chaudhary M; Yang TY; Yu YJ; Chueh YL
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55470-55480. PubMed ID: 34775743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-Time Observation of the Electrode-Size-Dependent Evolution Dynamics of the Conducting Filaments in a SiO
    Yuan F; Zhang Z; Liu C; Zhou F; Yau HM; Lu W; Qiu X; Wong HP; Dai J; Chai Y
    ACS Nano; 2017 Apr; 11(4):4097-4104. PubMed ID: 28319363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscopic structural rearrangements of the Cu-filament in conductive-bridge memories.
    Celano U; Giammaria G; Goux L; Belmonte A; Jurczak M; Vandervorst W
    Nanoscale; 2016 Jul; 8(29):13915-23. PubMed ID: 27441315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Breaking the Current-Retention Dilemma in Cation-Based Resistive Switching Devices Utilizing Graphene with Controlled Defects.
    Zhao X; Ma J; Xiao X; Liu Q; Shao L; Chen D; Liu S; Niu J; Zhang X; Wang Y; Cao R; Wang W; Di Z; Lv H; Long S; Liu M
    Adv Mater; 2018 Apr; 30(14):e1705193. PubMed ID: 29436065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cluster-Type Filaments Induced by Doping in Low-Operation-Current Conductive Bridge Random Access Memory.
    Sun Y; Song C; Yin S; Qiao L; Wan Q; Liu J; Wang R; Zeng F; Pan F
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29481-29486. PubMed ID: 32490665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excellent Resistive Switching Performance of Cu-Se-Based Atomic Switch Using Lanthanide Metal Nanolayer at the Cu-Se/Al
    Woo H; Vishwanath SK; Jeon S
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8124-8131. PubMed ID: 29441789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic Magnetoresistance of Nano-conductive Filament in Co/HfO
    Li L; Liu Y; Teng J; Long S; Guo Q; Zhang M; Wu Y; Yu G; Liu Q; Lv H; Liu M
    Nanoscale Res Lett; 2017 Dec; 12(1):210. PubMed ID: 28335585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive-bridging random access memory: challenges and opportunity for 3D architecture.
    Jana D; Roy S; Panja R; Dutta M; Rahaman SZ; Mahapatra R; Maikap S
    Nanoscale Res Lett; 2015; 10():188. PubMed ID: 25977660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic Monte Carlo simulations on electroforming in nanomanipulated conductive bridge random access memory devices.
    Li YC; Xu P; Lv YY; Fa W; Chen S
    Nanoscale; 2024 Jul; 16(28):13562-13570. PubMed ID: 38953142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eliminating Negative-SET Behavior by Suppressing Nanofilament Overgrowth in Cation-Based Memory.
    Liu S; Lu N; Zhao X; Xu H; Banerjee W; Lv H; Long S; Li Q; Liu Q; Liu M
    Adv Mater; 2016 Dec; 28(48):10623-10629. PubMed ID: 27748526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly durable and flexible gallium-based oxide conductive-bridging random access memory.
    Gan KJ; Liu PT; Chien TC; Ruan DB; Sze SM
    Sci Rep; 2019 Oct; 9(1):14141. PubMed ID: 31578400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen Concentration Effect on Conductive Bridge Random Access Memory of InWZnO Thin Film.
    Hsu CC; Liu PT; Gan KJ; Ruan DB; Sze SM
    Nanomaterials (Basel); 2021 Aug; 11(9):. PubMed ID: 34578520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode.
    Liu Q; Long S; Lv H; Wang W; Niu J; Huo Z; Chen J; Liu M
    ACS Nano; 2010 Oct; 4(10):6162-8. PubMed ID: 20853865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon compatible Sn-based resistive switching memory.
    Sonde S; Chakrabarti B; Liu Y; Sasikumar K; Lin J; Stan L; Divan R; Ocola LE; Rosenmann D; Choudhury P; Ni K; Sankaranarayanan SKRS; Datta S; Guha S
    Nanoscale; 2018 May; 10(20):9441-9449. PubMed ID: 29663006
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of tungsten doping on the variability of InZnO conductive-bridging random access memory.
    Gan KJ; Liu PT; Ruan DB; Hsu CC; Chiu YC; Sze SM
    Nanotechnology; 2021 Jan; 32(3):035203. PubMed ID: 33022668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanofilament Formation and Regeneration During Cu/Al₂O₃ Resistive Memory Switching.
    Hubbard WA; Kerelsky A; Jasmin G; White ER; Lodico J; Mecklenburg M; Regan BC
    Nano Lett; 2015 Jun; 15(6):3983-7. PubMed ID: 25927328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of Filament Overgrowth in Conductive Bridge Random Access Memory by Ta
    Yu J; Xu X; Gong T; Luo Q; Dong D; Yuan P; Tai L; Yin J; Zhu X; Wu X; Lv H; Liu M
    Nanoscale Res Lett; 2019 Mar; 14(1):111. PubMed ID: 30923974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductive bridge random access memory characteristics of SiCN based transparent device due to indium diffusion.
    Kumar D; Aluguri R; Chand U; Tseng TY
    Nanotechnology; 2018 Mar; 29(12):125202. PubMed ID: 29350624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.