These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 28234504)

  • 1. Anisotropy-Induced Quantum Interference and Population Trapping between Orthogonal Quantum Dot Exciton States in Semiconductor Cavity Systems.
    Hughes S; Agarwal GS
    Phys Rev Lett; 2017 Feb; 118(6):063601. PubMed ID: 28234504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theory of quantum light emission from a strongly-coupled single quantum dot photonic-crystal cavity system.
    Hughes S; Yao P
    Opt Express; 2009 Mar; 17(5):3322-30. PubMed ID: 19259169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macroscopic entanglement and violation of Bell's inequalities between two spatially separated quantum dots in a planar photonic crystal system.
    Yao P; Hughes S
    Opt Express; 2009 Jul; 17(14):11505-14. PubMed ID: 19582066
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A gated quantum dot strongly coupled to an optical microcavity.
    Najer D; Söllner I; Sekatski P; Dolique V; Löbl MC; Riedel D; Schott R; Starosielec S; Valentin SR; Wieck AD; Sangouard N; Ludwig A; Warburton RJ
    Nature; 2019 Nov; 575(7784):622-627. PubMed ID: 31634901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system.
    Cárdenas PC; Quesada N; Vinck-Posada H; Rodríguez BA
    J Phys Condens Matter; 2011 Jul; 23(26):265304. PubMed ID: 21673402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mollow quintuplets from coherently excited quantum dots.
    Ge RC; Weiler S; Ulhaq A; Ulrich SM; Jetter M; Michler P; Hughes S
    Opt Lett; 2013 May; 38(10):1691-3. PubMed ID: 23938913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling dipole transparency with magnetic fields.
    Hughes S; Agarwal GS
    Opt Lett; 2018 Dec; 43(24):5953-5956. PubMed ID: 30547978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent Mollow triplet spectra from a single quantum dot: Rabi frequency renormalization and sideband linewidth insensitivity.
    Wei YJ; He Y; He YM; Lu CY; Pan JW; Schneider C; Kamp M; Höfling S; McCutcheon DP; Nazir A
    Phys Rev Lett; 2014 Aug; 113(9):097401. PubMed ID: 25216004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamically controlling the emission of single excitons in photonic crystal cavities.
    Pagliano F; Cho Y; Xia T; van Otten F; Johne R; Fiore A
    Nat Commun; 2014 Dec; 5():5786. PubMed ID: 25503405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver Nanoshell Plasmonically Controlled Emission of Semiconductor Quantum Dots in the Strong Coupling Regime.
    Zhou N; Yuan M; Gao Y; Li D; Yang D
    ACS Nano; 2016 Apr; 10(4):4154-63. PubMed ID: 26972554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proposed Scheme to Generate Bright Entangled Photon Pairs by Application of a Quadrupole Field to a Single Quantum Dot.
    Zeeshan M; Sherlekar N; Ahmadi A; Williams RL; Reimer ME
    Phys Rev Lett; 2019 Jun; 122(22):227401. PubMed ID: 31283293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherent photonic coupling of semiconductor quantum dots.
    Reitzenstein S; Löffler A; Hofmann C; Kubanek A; Kamp M; Reithmaier JP; Forchel A; Kulakovskii VD; Keldysh LV; Ponomarev IV; Reinecke TL
    Opt Lett; 2006 Jun; 31(11):1738-40. PubMed ID: 16688279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waveguide-coupled photonic crystal cavity for quantum dot spin readout.
    Coles RJ; Prtljaga N; Royall B; Luxmoore IJ; Fox AM; Skolnick MS
    Opt Express; 2014 Feb; 22(3):2376-85. PubMed ID: 24663529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical Transparency Induced by a Largely Purcell Enhanced Quantum Dot in a Polarization-Degenerate Cavity.
    Singh H; Farfurnik D; Luo Z; Bracker AS; Carter SG; Waks E
    Nano Lett; 2022 Oct; 22(19):7959-7964. PubMed ID: 36129824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exciton Dipole-Dipole Interaction in a Single Coupled-Quantum-Dot Structure via Polarized Excitation.
    Kim H; Kim I; Kyhm K; Taylor RA; Kim JS; Song JD; Je KC; Dang LS
    Nano Lett; 2016 Dec; 16(12):7755-7760. PubMed ID: 27960477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.