BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 28234686)

  • 1. The Second-Generation Maturation Inhibitor GSK3532795 Maintains Potent Activity Toward HIV Protease Inhibitor-Resistant Clinical Isolates.
    Ray N; Li T; Lin Z; Protack T; van Ham PM; Hwang C; Krystal M; Nijhuis M; Lataillade M; Dicker I
    J Acquir Immune Defic Syndr; 2017 May; 75(1):52-60. PubMed ID: 28234686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of protease inhibitor resistance in the gag and pol genes of HIV subtype G isolates.
    Knops E; Däumer M; Awerkiew S; Kartashev V; Schülter E; Kutsev S; Brakier-Gingras L; Kaiser R; Pfister H; Verheyen J
    J Antimicrob Chemother; 2010 Jul; 65(7):1472-6. PubMed ID: 20430786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Gag mutations in PI resistance in the Swiss HIV cohort study: bystanders or contributors?
    Kletenkov K; Hoffmann D; Böni J; Yerly S; Aubert V; Schöni-Affolter F; Struck D; Verheyen J; Klimkait T;
    J Antimicrob Chemother; 2017 Mar; 72(3):866-875. PubMed ID: 27999036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistance profile of the HIV-1 maturation inhibitor GSK3532795 in vitro and in a clinical study.
    Dicker I; Zhang S; Ray N; Beno BR; Regueiro-Ren A; Joshi S; Cockett M; Krystal M; Lataillade M
    PLoS One; 2019; 14(10):e0224076. PubMed ID: 31622432
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Datir R; Kemp S; El Bouzidi K; Mlchocova P; Goldstein R; Breuer J; Towers GJ; Jolly C; Quiñones-Mateu ME; Dakum PS; Ndembi N; Gupta RK
    mBio; 2020 Nov; 11(6):. PubMed ID: 33144375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenotypic and genotypic analysis of clinical HIV-1 isolates reveals extensive protease inhibitor cross-resistance: a survey of over 6000 samples.
    Hertogs K; Bloor S; Kemp SD; Van den Eynde C; Alcorn TM; Pauwels R; Van Houtte M; Staszewski S; Miller V; Larder BA
    AIDS; 2000 Jun; 14(9):1203-10. PubMed ID: 10894285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-cleavage site gag mutations in amprenavir-resistant human immunodeficiency virus type 1 (HIV-1) predispose HIV-1 to rapid acquisition of amprenavir resistance but delay development of resistance to other protease inhibitors.
    Aoki M; Venzon DJ; Koh Y; Aoki-Ogata H; Miyakawa T; Yoshimura K; Maeda K; Mitsuya H
    J Virol; 2009 Apr; 83(7):3059-68. PubMed ID: 19176623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of Gag and Protease to HIV-1 Phenotypic Drug Resistance in Pediatric Patients Failing Protease Inhibitor-Based Therapy.
    Giandhari J; Basson AE; Sutherland K; Parry CM; Cane PA; Coovadia A; Kuhn L; Hunt G; Morris L
    Antimicrob Agents Chemother; 2016 Apr; 60(4):2248-56. PubMed ID: 26833162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HIV-1 protease inhibitor mutations affect the development of HIV-1 resistance to the maturation inhibitor bevirimat.
    Fun A; van Maarseveen NM; Pokorná J; Maas RE; Schipper PJ; Konvalinka J; Nijhuis M
    Retrovirology; 2011 Aug; 8():70. PubMed ID: 21864346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism.
    Nijhuis M; van Maarseveen NM; Lastere S; Schipper P; Coakley E; Glass B; Rovenska M; de Jong D; Chappey C; Goedegebuure IW; Heilek-Snyder G; Dulude D; Cammack N; Brakier-Gingras L; Konvalinka J; Parkin N; Kräusslich HG; Brun-Vezinet F; Boucher CA
    PLoS Med; 2007 Jan; 4(1):e36. PubMed ID: 17227139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular characterization of clinical isolates of human immunodeficiency virus resistant to the protease inhibitor darunavir.
    Sasková KG; Kozísek M; Rezácová P; Brynda J; Yashina T; Kagan RM; Konvalinka J
    J Virol; 2009 Sep; 83(17):8810-8. PubMed ID: 19535439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in human immunodeficiency virus type 1 Gag at positions L449 and P453 are linked to I50V protease mutants in vivo and cause reduction of sensitivity to amprenavir and improved viral fitness in vitro.
    Maguire MF; Guinea R; Griffin P; Macmanus S; Elston RC; Wolfram J; Richards N; Hanlon MH; Porter DJ; Wrin T; Parkin N; Tisdale M; Furfine E; Petropoulos C; Snowden BW; Kleim JP
    J Virol; 2002 Aug; 76(15):7398-406. PubMed ID: 12097552
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep sequencing of protease inhibitor resistant HIV patient isolates reveals patterns of correlated mutations in Gag and protease.
    Flynn WF; Chang MW; Tan Z; Oliveira G; Yuan J; Okulicz JF; Torbett BE; Levy RM
    PLoS Comput Biol; 2015 Apr; 11(4):e1004249. PubMed ID: 25894830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TMC310911, a novel human immunodeficiency virus type 1 protease inhibitor, shows in vitro an improved resistance profile and higher genetic barrier to resistance compared with current protease inhibitors.
    Dierynck I; Van Marck H; Van Ginderen M; Jonckers TH; Nalam MN; Schiffer CA; Raoof A; Kraus G; Picchio G
    Antimicrob Agents Chemother; 2011 Dec; 55(12):5723-31. PubMed ID: 21896904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for Reduced Drug Susceptibility without Emergence of Major Protease Mutations following Protease Inhibitor Monotherapy Failure in the SARA Trial.
    Sutherland KA; Parry CM; McCormick A; Kapaata A; Lyagoba F; Kaleebu P; Gilks CF; Goodall R; Spyer M; Kityo C; Pillay D; Gupta RK;
    PLoS One; 2015; 10(9):e0137834. PubMed ID: 26382239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of gag mutations on selection of darunavir resistance mutations in HIV-1 protease.
    Lambert-Niclot S; Flandre P; Malet I; Canestri A; Soulié C; Tubiana R; Brunet C; Wirden M; Katlama C; Calvez V; Marcelin AG
    J Antimicrob Chemother; 2008 Nov; 62(5):905-8. PubMed ID: 18765410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HIV-1 protease, Gag and gp41 baseline substitutions associated with virological response to a PI-based regimen.
    Perrier M; Castain L; Regad L; Todesco E; Landman R; Visseaux B; Yazdanpanah Y; Rodriguez C; Joly V; Calvez V; Marcelin AG; Descamps D; Charpentier C
    J Antimicrob Chemother; 2019 Jun; 74(6):1679-1692. PubMed ID: 30768160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational patterns in the frameshift-regulating site of HIV-1 selected by protease inhibitors.
    Knops E; Brakier-Gingras L; Schülter E; Pfister H; Kaiser R; Verheyen J
    Med Microbiol Immunol; 2012 May; 201(2):213-8. PubMed ID: 22200908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutations in multiple domains of Gag drive the emergence of in vitro resistance to the phosphonate-containing HIV-1 protease inhibitor GS-8374.
    Stray KM; Callebaut C; Glass B; Tsai L; Xu L; Müller B; Kräusslich HG; Cihlar T
    J Virol; 2013 Jan; 87(1):454-63. PubMed ID: 23097440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic Changes in HIV-1 Gag-Protease Associated with Protease Inhibitor-Based Therapy Failure in Pediatric Patients.
    Giandhari J; Basson AE; Coovadia A; Kuhn L; Abrams EJ; Strehlau R; Morris L; Hunt GM
    AIDS Res Hum Retroviruses; 2015 Aug; 31(8):776-82. PubMed ID: 25919760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.