These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 28234691)

  • 1. Reconstruction of A Radiological Release Using Aerosol Sampling.
    Hayes RB
    Health Phys; 2017 Apr; 112(4):326-337. PubMed ID: 28234691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remarks on representative ground-level air monitoring.
    Wershofen H
    Appl Radiat Isot; 2013 Nov; 81():284-9. PubMed ID: 23566807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plutonium in the WIPP environment: its detection, distribution and behavior.
    Thakur P; Ballard S; Nelson R
    J Environ Monit; 2012 May; 14(6):1604-15. PubMed ID: 22549140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective dose scaling factors for use with cascade impactor sampling data in tenorm inhalation exposures.
    Kim KP; Wu CY; Birky BK; Bolch WE
    Health Phys; 2005 Oct; 89(4):359-74. PubMed ID: 16155458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental and health impacts of February 14, 2014 radiation release from the nation's only deep geologic nuclear waste repository.
    Thakur P; Lemons BG; Ballard S; Hardy R
    J Environ Radioact; 2015 Aug; 146():6-15. PubMed ID: 25880461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consequence Assessment of the WIPP Radiological Release from February 2014.
    Hayes RB
    Health Phys; 2016 Apr; 110(4):342-60. PubMed ID: 26910027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Source term estimation and the isotopic ratio of radioactive material released from the WIPP repository in New Mexico, USA.
    Thakur P
    J Environ Radioact; 2016 Jan; 151 Pt 1():193-203. PubMed ID: 26492395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of air monitoring and experimental aerosol data for intake assessment for Mayak plutonium workers.
    Zaytseva YV; Tretyakov FD; Romanov SA; Miller G; Bertelli L; Guilmette RA
    Radiat Prot Dosimetry; 2007; 127(1-4):535-9. PubMed ID: 17848389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of natural radioactive aerosols on artificial radioactivity detection in the Spanish surveillance networks.
    Vargas A; Arnold D; Ortega X; Parages C
    Appl Radiat Isot; 2008 Nov; 66(11):1627-31. PubMed ID: 18511289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The magnitude and relevance of the February 2014 radiation release from the Waste Isolation Pilot Plant repository in New Mexico, USA.
    Thakur P; Lemons BG; White CR
    Sci Total Environ; 2016 Sep; 565():1124-1137. PubMed ID: 27261427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.
    Cheng YS; Kenoyer JL; Guilmette RA; Parkhurst MA
    Health Phys; 2009 Mar; 96(3):266-75. PubMed ID: 19204485
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Source and long-term behavior of transuranic aerosols in the WIPP environment.
    Thakur P; Lemons BG
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19645-56. PubMed ID: 27394421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a new aerosol monitoring system and its application in Fukushima nuclear accident related aerosol radioactivity measurement at the CTBT radionuclide station in Sidney of Canada.
    Zhang W; Bean M; Benotto M; Cheung J; Ungar K; Ahier B
    J Environ Radioact; 2011 Dec; 102(12):1065-9. PubMed ID: 21872373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiological impact in Korea following the Fukushima nuclear accident.
    Kim CK; Byun JI; Chae JS; Choi HY; Choi SW; Kim DJ; Kim YJ; Lee DM; Park WJ; Yim SA; Yun JY
    J Environ Radioact; 2012 Sep; 111():70-82. PubMed ID: 22119285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining radioactive aerosol concentrations using a surface radioactive contamination measurement device.
    Cerny R; Johnova K; Kozlovska M; Otahal P; Vosahlikova I
    Radiat Prot Dosimetry; 2015 Jun; 164(4):533-6. PubMed ID: 25979746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.
    Anand S; Mayya YS
    J Environ Radioact; 2015 Mar; 141():153-63. PubMed ID: 25613359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hand calculations for transport of radioactive aerosols through sampling systems.
    Hogue M; Thompson M; Farfan E; Hadlock D
    Health Phys; 2014 May; 106(5 Suppl 2):S78-87. PubMed ID: 24667389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of aerosol distribution inside the object "shelter" at the Chernobyl nuclear reactor site.
    Bondarenko OA; Aryasov PB; Melnichuk DV; Medvedev SY
    Health Phys; 2001 Aug; 81(2):114-23. PubMed ID: 11480870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sources and distribution of
    Thakur P; Ward AL
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2328-2344. PubMed ID: 30465246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of sampling locations for two radionuclide air-sampling systems based on the requirements of ANSI/HPS N13.1-1999.
    Ballinger MY; Barnett JM; Glissmeyer JA; Edwards DL
    Health Phys; 2004 Apr; 86(4):406-15. PubMed ID: 15057062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.