These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 28235163)

  • 1. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.
    Lilić A; Bennici S; Devaux JF; Dubois JL; Auroux A
    ChemSusChem; 2017 May; 10(9):1916-1930. PubMed ID: 28235163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Study of Basic, Amphoteric, and Acidic Catalysts in the Oxidative Coupling of Methanol and Ethanol for Acrolein Production.
    Lilić A; Wei T; Bennici S; Devaux JF; Dubois JL; Auroux A
    ChemSusChem; 2017 Sep; 10(17):3459-3472. PubMed ID: 28686350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of preparation method and CuO promotion in the conversion of ethanol into 1,3-butadiene over SiO₂-MgO catalysts.
    Angelici C; Velthoen ME; Weckhuysen BM; Bruijnincx PC
    ChemSusChem; 2014 Sep; 7(9):2505-15. PubMed ID: 25045112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ternary Ag/MgO-SiO2 catalysts for the conversion of ethanol into butadiene.
    Janssens W; Makshina EV; Vanelderen P; De Clippel F; Houthoofd K; Kerkhofs S; Martens JA; Jacobs PA; Sels BF
    ChemSusChem; 2015 Mar; 8(6):994-1008. PubMed ID: 25410420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative coupling of bio-alcohols mixture over hierarchically porous perovskite catalysts for sustainable acrolein production.
    Essehaity AM; Abd ElHafiz DR; Aman D; Mikhail S; Abdel-Monem YK
    RSC Adv; 2021 Aug; 11(46):28961-28972. PubMed ID: 35478557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Sugars to Wheels: The Conversion of Ethanol to 1,3-Butadiene over Metal-Promoted Magnesia-Silicate Catalysts.
    Shylesh S; Gokhale AA; Scown CD; Kim D; Ho CR; Bell AT
    ChemSusChem; 2016 Jun; 9(12):1462-72. PubMed ID: 27198471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vapor Phase Dehydration of Glycerol to Acrolein Over SBA-15 Supported Vanadium Substituted Phosphomolybdic Acid Catalyst.
    Viswanadham B; Srikanth A; Kumar VP; Chary KV
    J Nanosci Nanotechnol; 2015 Jul; 15(7):5391-402. PubMed ID: 26373149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a metal-promoted oxide catalyst for the selective synthesis of butadiene from ethanol.
    Sushkevich VL; Ivanova II; Ordomsky VV; Taarning E
    ChemSusChem; 2014 Sep; 7(9):2527-36. PubMed ID: 25123990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the relationship between the basicity of a surface and its ability to catalyze transesterification in liquid and gas phases: the case of MgO.
    Cornu D; Guesmi H; Laugel G; Krafft JM; Lauron-Pernot H
    Phys Chem Chem Phys; 2015 Jun; 17(21):14168-76. PubMed ID: 25958788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transesterification of Nannochloropsis oculata microalga's lipid to biodiesel on Al2O3 supported CaO and MgO catalysts.
    Umdu ES; Tuncer M; Seker E
    Bioresour Technol; 2009 Jun; 100(11):2828-31. PubMed ID: 19201601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-alcohols biorefinery: improvement of catalyst for ethanol conversion.
    Olson ES; Sharma RK; Aulich TR
    Appl Biochem Biotechnol; 2004; 113-116():913-32. PubMed ID: 15054242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potency of hydrothermally prepared sulfated silica (SO
    Pratika RA; Wijaya K; Utami M; Mulijani S; Patah A; Alarifi S; Ram Mani R; Kumar Yadav K; Ravindran B; Chung WJ; Chang SW; Munusamy-Ramanujam G
    Chemosphere; 2023 Nov; 341():139822. PubMed ID: 37598950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct synthesis of ethanol from dimethyl ether and syngas over combined H-Mordenite and Cu/ZnO catalysts.
    Li X; San X; Zhang Y; Ichii T; Meng M; Tan Y; Tsubaki N
    ChemSusChem; 2010 Oct; 3(10):1192-9. PubMed ID: 20715046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ternary Ag/MgO-SiO2 catalysts for the conversion of ethanol into butadiene.
    Janssens W; Makshina EV; Vanelderen P; De Clippel F; Houthoofd K; Kerkhofs S; Martens JA; Jacobs PA; Sels BF
    ChemSusChem; 2015 Mar; 8(6):913. PubMed ID: 25787127
    [No Abstract]   [Full Text] [Related]  

  • 15. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.
    Sun J; Zhu K; Gao F; Wang C; Liu J; Peden CH; Wang Y
    J Am Chem Soc; 2011 Jul; 133(29):11096-9. PubMed ID: 21682296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A tailored catalyst for the sustainable conversion of glycerol to acrolein: mechanistic aspect of sequential dehydration.
    Yun D; Kim TY; Park DS; Yun YS; Han JW; Yi J
    ChemSusChem; 2014 Aug; 7(8):2193-201. PubMed ID: 25045005
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic partial oxidation of methanol and ethanol for hydrogen generation.
    Hohn KL; Lin YC
    ChemSusChem; 2009; 2(10):927-40. PubMed ID: 19728348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autocatalysis in the open circuit interaction of alcohol molecules with oxidized Pt surfaces.
    Batista BC; Sitta E; Eiswirth M; Varela H
    Phys Chem Chem Phys; 2008 Nov; 10(44):6686-92. PubMed ID: 18989481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards the sustainable production of acrolein by glycerol dehydration.
    Katryniok B; Paul S; Capron M; Dumeignil F
    ChemSusChem; 2009; 2(8):719-30. PubMed ID: 19693786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective oxidation of methanol to dimethoxymethane under mild conditions over V2O5/TiO2 with enhanced surface acidity.
    Fu Y; Shen J
    Chem Commun (Camb); 2007 Jun; (21):2172-4. PubMed ID: 17520126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.