These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 28235404)
21. RNA-Seq Analysis of Abdominal Fat Reveals Differences between Modern Commercial Broiler Chickens with High and Low Feed Efficiencies. Zhuo Z; Lamont SJ; Lee WR; Abasht B PLoS One; 2015; 10(8):e0135810. PubMed ID: 26295149 [TBL] [Abstract][Full Text] [Related]
22. Gene expression in breast muscle associated with feed efficiency in a single male broiler line using a chicken 44K oligo microarray. I. Top differentially expressed genes. Kong BW; Song JJ; Lee JY; Hargis BM; Wing T; Lassiter K; Bottje W Poult Sci; 2011 Nov; 90(11):2535-47. PubMed ID: 22010239 [TBL] [Abstract][Full Text] [Related]
23. Possible role of avian uncoupling protein in down-regulating mitochondrial superoxide production in skeletal muscle of fasted chickens. Abe T; Mujahid A; Sato K; Akiba Y; Toyomizu M FEBS Lett; 2006 Sep; 580(20):4815-22. PubMed ID: 16904672 [TBL] [Abstract][Full Text] [Related]
24. The effect of heat stress on GHR, IGF-I, ANT, UCP and COXIII mRNA expression in the liver and muscle of high and low feed efficiency female quail. Gasparino E; Del Vesco AP; Voltolini DM; Nascimento CS; Batista E; Khatlab AS; Grieser DO; Zancanela V; GuimarÃEs SE Br Poult Sci; 2014; 55(4):466-73. PubMed ID: 24848692 [TBL] [Abstract][Full Text] [Related]
25. Effect of vitamin D status improvement with 25-hydroxycholecalciferol on skeletal muscle growth characteristics and satellite cell activity in broiler chickens. Hutton KC; Vaughn MA; Litta G; Turner BJ; Starkey JD J Anim Sci; 2014 Aug; 92(8):3291-9. PubMed ID: 24894000 [TBL] [Abstract][Full Text] [Related]
26. Differential expression of feeding-related hypothalamic neuropeptides in the first generation of quails divergently selected for low or high feed efficiency. Blankenship K; Gilley A; Piekarski A; Orlowski S; Greene E; Bottje W; Anthony N; Dridi S Neuropeptides; 2016 Aug; 58():31-40. PubMed ID: 26707635 [TBL] [Abstract][Full Text] [Related]
27. Electrolysed reduced water decreases reactive oxygen species-induced oxidative damage to skeletal muscle and improves performance in broiler chickens exposed to medium-term chronic heat stress. Azad MA; Kikusato M; Zulkifli I; Toyomizu M Br Poult Sci; 2013; 54(4):503-9. PubMed ID: 23815735 [TBL] [Abstract][Full Text] [Related]
28. Feed efficiency and mitochondrial function. Bottje W; Pumford NR; Ojano-Dirain C; Iqbal M; Lassiter K Poult Sci; 2006 Jan; 85(1):8-14. PubMed ID: 16493939 [TBL] [Abstract][Full Text] [Related]
29. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Lin J; Wu H; Tarr PT; Zhang CY; Wu Z; Boss O; Michael LF; Puigserver P; Isotani E; Olson EN; Lowell BB; Bassel-Duby R; Spiegelman BM Nature; 2002 Aug; 418(6899):797-801. PubMed ID: 12181572 [TBL] [Abstract][Full Text] [Related]
30. Differential effects of thyroid hormones on energy metabolism of rat slow- and fast-twitch muscles. Bahi L; Garnier A; Fortin D; Serrurier B; Veksler V; Bigard AX; Ventura-Clapier R J Cell Physiol; 2005 Jun; 203(3):589-98. PubMed ID: 15605382 [TBL] [Abstract][Full Text] [Related]
31. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle. Salleh MS; Mazzoni G; Höglund JK; Olijhoek DW; Lund P; Løvendahl P; Kadarmideen HN BMC Genomics; 2017 Mar; 18(1):258. PubMed ID: 28340555 [TBL] [Abstract][Full Text] [Related]
33. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle. Isaeva EV; Shkryl VM; Shirokova N J Physiol; 2005 Jun; 565(Pt 3):855-72. PubMed ID: 15845582 [TBL] [Abstract][Full Text] [Related]
34. New insights into skeletal muscle fibre types in the dog with particular focus towards hybrid myosin phenotypes. Acevedo LM; Rivero JL Cell Tissue Res; 2006 Feb; 323(2):283-303. PubMed ID: 16163488 [TBL] [Abstract][Full Text] [Related]
35. Differential regulation of the expression of lipid metabolism-related genes with skeletal muscle type in growing chickens. Saneyasu T; Kimura S; Kitashiro A; Tsuchii N; Tsuchihashi T; Inui M; Honda K; Kamisoyama H Comp Biochem Physiol B Biochem Mol Biol; 2015 Nov; 189():1-5. PubMed ID: 26188321 [TBL] [Abstract][Full Text] [Related]
36. Calcineurin differentially regulates fast myosin heavy chain genes in oxidative muscle fibre type conversion. da Costa N; Edgar J; Ooi PT; Su Y; Meissner JD; Chang KC Cell Tissue Res; 2007 Sep; 329(3):515-27. PubMed ID: 17587059 [TBL] [Abstract][Full Text] [Related]
37. Coordination of metabolic plasticity in skeletal muscle. Hood DA; Irrcher I; Ljubicic V; Joseph AM J Exp Biol; 2006 Jun; 209(Pt 12):2265-75. PubMed ID: 16731803 [TBL] [Abstract][Full Text] [Related]
38. In situ hybridisation of a large repertoire of muscle-specific transcripts in fish larvae: the new superficial slow-twitch fibres exhibit characteristics of fast-twitch differentiation. Chauvigné F; Ralliere C; Cauty C; Rescan PY J Exp Biol; 2006 Jan; 209(Pt 2):372-9. PubMed ID: 16391359 [TBL] [Abstract][Full Text] [Related]
39. Membrane potential and H2O2 production in duodenal mitochondria from broiler chickens (Gallus gallus domesticus) with low and high feed efficiency. Ojano-Dirain C; Tinsley NB; Wing T; Cooper M; Bottje WG Comp Biochem Physiol A Mol Integr Physiol; 2007 Aug; 147(4):934-41. PubMed ID: 17409002 [TBL] [Abstract][Full Text] [Related]
40. Meat-type chickens have a higher efficiency of mitochondrial oxidative phosphorylation than laying-type chickens. Toyomizu M; Kikusato M; Kawabata Y; Azad MA; Inui E; Amo T Comp Biochem Physiol A Mol Integr Physiol; 2011 May; 159(1):75-81. PubMed ID: 21300168 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]