These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28235418)

  • 1. BaalChIP: Bayesian analysis of allele-specific transcription factor binding in cancer genomes.
    de Santiago I; Liu W; Yuan K; O'Reilly M; Chilamakuri CS; Ponder BA; Meyer KB; Markowetz F
    Genome Biol; 2017 Feb; 18(1):39. PubMed ID: 28235418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iASeq: integrative analysis of allele-specificity of protein-DNA interactions in multiple ChIP-seq datasets.
    Wei Y; Li X; Wang QF; Ji H
    BMC Genomics; 2012 Nov; 13():681. PubMed ID: 23194258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allelic imbalance assays to quantify allele-specific gene expression and transcription factor binding.
    Luca F; Di Rienzo A
    Methods Mol Biol; 2013; 1015():201-11. PubMed ID: 23824858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ABC: a tool to identify SNVs causing allele-specific transcription factor binding from ChIP-Seq experiments.
    Bailey SD; Virtanen C; Haibe-Kains B; Lupien M
    Bioinformatics; 2015 Sep; 31(18):3057-9. PubMed ID: 25995231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the identification of potential regulatory variants within genome wide association candidate SNP sets.
    Chen CY; Chang IS; Hsiung CA; Wasserman WW
    BMC Med Genomics; 2014 Jun; 7():34. PubMed ID: 24920305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GERV: a statistical method for generative evaluation of regulatory variants for transcription factor binding.
    Zeng H; Hashimoto T; Kang DD; Gifford DK
    Bioinformatics; 2016 Feb; 32(4):490-6. PubMed ID: 26476779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust analysis of allele-specific copy number alterations from scRNA-seq data with XClone.
    Huang R; Huang X; Tong Y; Yan HYN; Leung SY; Stegle O; Huang Y
    Nat Commun; 2024 Aug; 15(1):6684. PubMed ID: 39107346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting copy number status and uncovering subclonal markers in heterogeneous tumor biopsies.
    Parisi F; Ariyan S; Narayan D; Bacchiocchi A; Hoyt K; Cheng E; Xu F; Li P; Halaban R; Kluger Y
    BMC Genomics; 2011 May; 12():230. PubMed ID: 21569352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Panel of rSNPs Demonstrating Allelic Asymmetry in Both ChIP-seq and RNA-seq Data and the Search for Their Phenotypic Outcomes through Analysis of DEGs.
    Korbolina EE; Bryzgalov LO; Ustrokhanova DZ; Postovalov SN; Poverin DV; Damarov IS; Merkulova TI
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved ChIP-seq peak detection system for simultaneously identifying post-translational modified transcription factors by combinatorial fusion, using SUMOylation as an example.
    Cheng CY; Chu CH; Hsu HW; Hsu FR; Tang CY; Wang WC; Kung HJ; Chang PC
    BMC Genomics; 2014; 15 Suppl 1(Suppl 1):S1. PubMed ID: 24564277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrogation of allelic chromatin states in human cells by high-density ChIP-genotyping.
    Light N; Adoue V; Ge B; Chen SH; Kwan T; Pastinen T
    Epigenetics; 2014 Sep; 9(9):1238-51. PubMed ID: 25055051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChIPulate: A comprehensive ChIP-seq simulation pipeline.
    Datta V; Hannenhalli S; Siddharthan R
    PLoS Comput Biol; 2019 Mar; 15(3):e1006921. PubMed ID: 30897079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChIP-BIT: Bayesian inference of target genes using a novel joint probabilistic model of ChIP-seq profiles.
    Chen X; Jung JG; Shajahan-Haq AN; Clarke R; Shih IeM; Wang Y; Magnani L; Wang TL; Xuan J
    Nucleic Acids Res; 2016 Apr; 44(7):e65. PubMed ID: 26704972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of in vivo DNA-binding events of plant transcription factors by ChIP-seq: experimental protocol and computational analysis.
    van Mourik H; Muiño JM; Pajoro A; Angenent GC; Kaufmann K
    Methods Mol Biol; 2015; 1284():93-121. PubMed ID: 25757769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R; Mathelier A; Del Peso L; Wasserman WW
    BMC Genomics; 2014 Jun; 15(1):472. PubMed ID: 24927817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites.
    Lefrançois P; Zheng W; Snyder M
    Methods Enzymol; 2010; 470():77-104. PubMed ID: 20946807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential motif enrichment analysis of paired ChIP-seq experiments.
    Lesluyes T; Johnson J; Machanick P; Bailey TL
    BMC Genomics; 2014 Sep; 15(1):752. PubMed ID: 25179504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discovering transcription factor binding sites in highly repetitive regions of genomes with multi-read analysis of ChIP-Seq data.
    Chung D; Kuan PF; Li B; Sanalkumar R; Liang K; Bresnick EH; Dewey C; Keleş S
    PLoS Comput Biol; 2011 Jul; 7(7):e1002111. PubMed ID: 21779159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crunch: integrated processing and modeling of ChIP-seq data in terms of regulatory motifs.
    Berger S; Pachkov M; Arnold P; Omidi S; Kelley N; Salatino S; van Nimwegen E
    Genome Res; 2019 Jul; 29(7):1164-1177. PubMed ID: 31138617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Most brain disease-associated and eQTL haplotypes are not located within transcription factor DNase-seq footprints in brain.
    Handel AE; Gallone G; Zameel Cader M; Ponting CP
    Hum Mol Genet; 2017 Jan; 26(1):79-89. PubMed ID: 27798116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.