These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 28235449)
1. Regio-selective lipase catalyzed hydrolysis of oxanorbornane-based sugar-like amphiphiles at air-water interface: A polarized FT-IRRAS study. Sarangi NK; Ganesan M; Muraleedharan KM; Patnaik A Chem Phys Lipids; 2017 Apr; 204():25-33. PubMed ID: 28235449 [TBL] [Abstract][Full Text] [Related]
2. Probing of lipase activity at air/water interface by sum-frequency generation spectroscopy. Niaura G; Kuprionis Z; Ignatjev I; Kazemekaite M; Valincius G; Talaikyte Z; Razumas V; Svendsen A J Phys Chem B; 2008 Apr; 112(13):4094-101. PubMed ID: 18324801 [TBL] [Abstract][Full Text] [Related]
3. Conformation and activity of lipase B from Candida antarctica in bicontinuous microemulsions. Subinya M; Steudle AK; Jurkowski TP; Stubenrauch C Colloids Surf B Biointerfaces; 2015 Jul; 131():108-14. PubMed ID: 25973762 [TBL] [Abstract][Full Text] [Related]
4. Structure and dynamics of H2O vis-á-vis phenylalanine recognition at a DPPC lipid membrane via interfacial H-bond types: insights from polarized FT-IRRAS and ADMP simulations. Sarangi NK; Ramesh N; Patnaik A J Chem Phys; 2015 Jan; 142(2):024702. PubMed ID: 25591372 [TBL] [Abstract][Full Text] [Related]
5. Monitoring of phospholipid monolayer hydrolysis by phospholipase A2 by use of polarization-modulated Fourier transform infrared spectroscopy. Grandbois M; Desbat B; Salesse C Biophys Chem; 2000 Dec; 88(1-3):127-35. PubMed ID: 11152270 [TBL] [Abstract][Full Text] [Related]
6. The catalytic efficiency of lipase in a novel water-in-[Bmim][PF6] microemulsion stabilized by both AOT and Triton X-100. Xue L; Li Y; Zou F; Lu L; Zhao Y; Huang X; Qu Y Colloids Surf B Biointerfaces; 2012 Apr; 92():360-6. PubMed ID: 22218335 [TBL] [Abstract][Full Text] [Related]
7. Efficient hydrolysis of tuna oil by a surfactant-coated lipase in a two-phase system. Ko WC; Wang HJ; Hwang JS; Hsieh CW J Agric Food Chem; 2006 Mar; 54(5):1849-53. PubMed ID: 16506843 [TBL] [Abstract][Full Text] [Related]
8. Unraveling tryptophan modulated 2D DPPC lattices: an approach toward stimuli responsiveness of the pulmonary surfactant. Sarangi NK; Patnaik A J Phys Chem B; 2011 Nov; 115(46):13551-62. PubMed ID: 21999639 [TBL] [Abstract][Full Text] [Related]
9. Organophosphorus hydrolase at the air-water interface: secondary structure and interaction with paraoxon. Zheng J; Desbat B; Rastogi VK; Shah SS; Defrank JJ; Leblanc RM Biomacromolecules; 2006 Oct; 7(10):2806-10. PubMed ID: 17025356 [TBL] [Abstract][Full Text] [Related]
10. Competition of Thermomyces lanuginosus lipase with its hydrolysis products at the oil-water interface. Muth M; Rothkötter S; Paprosch S; Schmid RP; Schnitzlein K Colloids Surf B Biointerfaces; 2017 Jan; 149():280-287. PubMed ID: 27770698 [TBL] [Abstract][Full Text] [Related]
11. Infrared reflection-absorption spectroscopy and polarization-modulated infrared reflection-absorption spectroscopy studies of the aequorin langmuir monolayer. Wang C; Micic M; Ensor M; Daunert S; Leblanc RM J Phys Chem B; 2008 Apr; 112(13):4146-51. PubMed ID: 18324807 [TBL] [Abstract][Full Text] [Related]
12. Hydrolysis of hydrophobic esters in a bicontinuous microemulsion catalysed by lipase B from Candida antarctica. Steudle AK; Subinya M; Nestl BM; Stubenrauch C Chemistry; 2015 Feb; 21(6):2691-700. PubMed ID: 25512180 [TBL] [Abstract][Full Text] [Related]
13. IRRAS studies on chain orientation in the monolayers of amino acid amphiphiles at the air-water interface depending on metal complex and hydrogen bond formation with the headgroups. Du X; Miao W; Liang Y J Phys Chem B; 2005 Apr; 109(15):7428-34. PubMed ID: 16851851 [TBL] [Abstract][Full Text] [Related]
14. A novel control of enzymatic enantioselectivity through the racemic temperature influenced by reaction media. Jin X; Liu B; Ni Z; Wu Q; Lin X Enzyme Microb Technol; 2011 May; 48(6-7):454-7. PubMed ID: 22113016 [TBL] [Abstract][Full Text] [Related]
15. Hydrolysis characterization of phospholipid monolayers catalyzed by different phospholipases at the air-water interface. He Q; Li J Adv Colloid Interface Sci; 2007 Feb; 131(1-2):91-8. PubMed ID: 17210114 [TBL] [Abstract][Full Text] [Related]
16. Stereochemistry of a diastereoisomeric amphiphile and the species of the lipase influence enzyme activity in the transesterification catalyzed by a lipase-co-lyophilizate with the amphiphile in organic media. Mine Y; Fukunaga K; Yoshimoto M; Nakao K; Sugimura Y Biotechnol Lett; 2003 Nov; 25(21):1863-7. PubMed ID: 14677713 [TBL] [Abstract][Full Text] [Related]
17. Calix[n]arene carboxylic acid derivatives as regulators of enzymatic reactions: enhanced enantioselectivity in lipase-catalyzed hydrolysis of (R/S)-naproxen methyl ester. Akoz E; Akbulut OY; Yilmaz M Appl Biochem Biotechnol; 2014 Jan; 172(1):509-23. PubMed ID: 24092454 [TBL] [Abstract][Full Text] [Related]
18. Organization of T-shaped facial amphiphiles at the air/water interface studied by infrared reflection absorption spectroscopy. Schwieger C; Chen B; Tschierske C; Kressler J; Blume A J Phys Chem B; 2012 Oct; 116(40):12245-56. PubMed ID: 22931365 [TBL] [Abstract][Full Text] [Related]
19. Removing the Active-Site Flap in Lipase A from Candida antarctica Produces a Functional Enzyme without Interfacial Activation. Wikmark Y; Engelmark Cassimjee K; Lihammar R; Bäckvall JE Chembiochem; 2016 Jan; 17(2):141-5. PubMed ID: 26543016 [TBL] [Abstract][Full Text] [Related]
20. Fourier-transform infrared assay of bile salt-stimulated lipase activity in reversed micelles. O'Connor CJ; Cleverly DR J Chem Technol Biotechnol; 1994 Nov; 61(3):209-14. PubMed ID: 7527225 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]