These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28235624)

  • 21. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model.
    Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z
    J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-resolution direct 3D printed PLGA scaffolds: print and shrink.
    Chia HN; Wu BM
    Biofabrication; 2014 Dec; 7(1):015002. PubMed ID: 25514829
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction.
    Brown A; Zaky S; Ray H; Sfeir C
    Acta Biomater; 2015 Jan; 11():543-53. PubMed ID: 25234156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen.
    Clark A; Milbrandt TA; Hilt JZ; Puleo DA
    Acta Biomater; 2014 May; 10(5):2125-32. PubMed ID: 24424269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA.
    Nie H; Wang CH
    J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bone augmentation using a highly porous PLGA/β-TCP scaffold containing fibroblast growth factor-2.
    Yoshida T; Miyaji H; Otani K; Inoue K; Nakane K; Nishimura H; Ibara A; Shimada A; Ogawa K; Nishida E; Sugaya T; Sun L; Fugetsu B; Kawanami M
    J Periodontal Res; 2015 Apr; 50(2):265-73. PubMed ID: 24966062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study.
    Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L
    Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro and in vivo evaluation of calcium phosphate composite scaffolds containing BMP-VEGF loaded PLGA microspheres for the treatment of avascular necrosis of the femoral head.
    Zhang HX; Zhang XP; Xiao GY; Hou Y; Cheng L; Si M; Wang SS; Li YH; Nie L
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():298-307. PubMed ID: 26706534
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of surface area to volume ratio of PLGA scaffolds with different architectures on scaffold degradation characteristics and drug release kinetics.
    Chew SA; Arriaga MA; Hinojosa VA
    J Biomed Mater Res A; 2016 May; 104(5):1202-11. PubMed ID: 26780154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold.
    Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS
    Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Depot injectable biodegradable nanoparticles loaded with recombinant human bone morphogenetic protein-2: preparation, characterization, and in vivo evaluation.
    Hassan AH; Hosny KM; Murshid ZA; Alhadlaq A; Alyamani A; Naguib G
    Drug Des Devel Ther; 2015; 9():3599-606. PubMed ID: 26203226
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide-eluting scaffolds and their interaction with smooth muscle cells in vitro.
    Parent M; Boudier A; Fries I; Gostyńska A; Rychter M; Lulek J; Leroy P; Gaucher C
    J Biomed Mater Res A; 2015 Oct; 103(10):3303-11. PubMed ID: 25809572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unintended potential impact of perfect sink conditions on PLGA degradation in microparticles.
    Klose D; Delplace C; Siepmann J
    Int J Pharm; 2011 Feb; 404(1-2):75-82. PubMed ID: 21056644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of poly(lactic-co-glycolic acid) (PLGA) coating on the mechanical, biodegradable, bioactive properties and drug release of porous calcium silicate scaffolds.
    Zhao L; Wu C; Lin K; Chang J
    Biomed Mater Eng; 2012; 22(5):289-300. PubMed ID: 23023146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formulation and evaluation of injectable in situ forming microparticles for sustained delivery of lornoxicam.
    Yehia SA; Abdel-Halim SA; Aziz MY
    Drug Dev Ind Pharm; 2017 Feb; 43(2):319-328. PubMed ID: 27671477
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of thermal degradation of SFF-based PLGA scaffolds fabricated using a multi-head deposition system followed by change of cell growth rate.
    Shim JH; Kim JY; Park JK; Hahn SK; Rhie JW; Kang SW; Lee SH; Cho DW
    J Biomater Sci Polym Ed; 2010; 21(8-9):1069-80. PubMed ID: 20507709
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimized bone regeneration based on sustained release from three-dimensional fibrous PLGA/HAp composite scaffolds loaded with BMP-2.
    Fu YC; Nie H; Ho ML; Wang CK; Wang CH
    Biotechnol Bioeng; 2008 Mar; 99(4):996-1006. PubMed ID: 17879301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of microencapsulation method and peptide loading on formulation of poly(lactide-co-glycolide) insulin nanoparticles.
    Kumar PS; Ramakrishna S; Saini TR; Diwan PV
    Pharmazie; 2006 Jul; 61(7):613-7. PubMed ID: 16889069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biodegradable intranasal nanoparticulate drug delivery system of risedronate sodium for osteoporosis.
    Fazil M; Hassan MQ; Baboota S; Ali J
    Drug Deliv; 2016 Sep; 23(7):2428-2438. PubMed ID: 25625496
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.