BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 28235784)

  • 1. Localization of the gate and selectivity filter of the full-length P2X7 receptor.
    Pippel A; Stolz M; Woltersdorf R; Kless A; Schmalzing G; Markwardt F
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2156-E2165. PubMed ID: 28235784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method.
    Egan TM; Haines WR; Voigt MM
    J Neurosci; 1998 Apr; 18(7):2350-9. PubMed ID: 9502796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct gating of ATP-activated ion channels (P2X2 receptors) by lipophilic attachment at the outer end of the second transmembrane domain.
    Rothwell SW; Stansfeld PJ; Bragg L; Verkhratsky A; North RA
    J Biol Chem; 2014 Jan; 289(2):618-26. PubMed ID: 24273165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of mutants in the transmembrane domains of the rat P2X7 receptor that regulate pore conductivity and agonist sensitivity.
    Jindrichova M; Bhattacharya A; Rupert M; Skopek P; Obsil T; Zemkova H
    J Neurochem; 2015 Jun; 133(6):815-27. PubMed ID: 25712548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human P2X7 receptors - Properties of single ATP-gated ion channels.
    Markwardt F
    Biochem Pharmacol; 2021 May; 187():114307. PubMed ID: 33130127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120.
    Allsopp RC; Dayl S; Schmid R; Evans RJ
    Sci Rep; 2017 Apr; 7(1):725. PubMed ID: 28389651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The second transmembrane domain of P2X7 contributes to dilated pore formation.
    Sun C; Heid ME; Keyel PA; Salter RD
    PLoS One; 2013; 8(4):e61886. PubMed ID: 23613968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gated access to the pore of a P2X receptor: structural implications for closed-open transitions.
    Kracun S; Chaptal V; Abramson J; Khakh BS
    J Biol Chem; 2010 Mar; 285(13):10110-10121. PubMed ID: 20093367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The P2X7 receptor: shifting from a low- to a high-conductance channel - an enigmatic phenomenon?
    Alves LA; de Melo Reis RA; de Souza CA; de Freitas MS; Teixeira PC; Neto Moreira Ferreira D; Xavier RF
    Biochim Biophys Acta; 2014 Oct; 1838(10):2578-87. PubMed ID: 24857862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based identification and characterisation of structurally novel human P2X7 receptor antagonists.
    Caseley EA; Muench SP; Fishwick CW; Jiang LH
    Biochem Pharmacol; 2016 Sep; 116():130-9. PubMed ID: 27481062
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels.
    Silberberg SD; Chang TH; Swartz KJ
    J Gen Physiol; 2005 Apr; 125(4):347-59. PubMed ID: 15795310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of the Juxtatransmembrane Intracellular Regions to the Time Course and Permeation of ATP-gated P2X7 Receptor Ion Channels.
    Allsopp RC; Evans RJ
    J Biol Chem; 2015 Jun; 290(23):14556-66. PubMed ID: 25903136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A central role for P2X7 receptors in human microglia.
    Janks L; Sharma CVR; Egan TM
    J Neuroinflammation; 2018 Nov; 15(1):325. PubMed ID: 30463629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. P2X7 receptor inhibition by 2-amino-3-aryl-1,4-naphthoquinones.
    de Luna Martins D; Borges AA; E Silva NADA; Faria JV; Hoelz LVB; de Souza HVCM; Bello ML; Boechat N; Ferreira VF; Faria RX
    Bioorg Chem; 2020 Nov; 104():104278. PubMed ID: 33010623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of anions on the human P2X7 receptor.
    Kubick C; Schmalzing G; Markwardt F
    Biochim Biophys Acta; 2011 Dec; 1808(12):2913-22. PubMed ID: 21872569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes during human P2X7 receptor activation examined by structural modelling and cysteine-based cross-linking studies.
    Caseley EA; Muench SP; Jiang LH
    Purinergic Signal; 2017 Mar; 13(1):135-141. PubMed ID: 28025718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors.
    Roberts JA; Evans RJ
    J Neurosci; 2007 Apr; 27(15):4072-82. PubMed ID: 17428985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of residues in the first transmembrane domain of the P2X7 that regulates receptor trafficking, sensitization, and dye uptake function.
    Rupert M; Bhattacharya A; Sivcev S; Knezu M; Cimicka J; Zemkova H
    J Neurochem; 2023 Jun; 165(6):874-891. PubMed ID: 36945903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of P2X7 receptor on tumorigenesis and its pharmacological properties.
    Zhang WJ; Hu CG; Zhu ZM; Luo HL
    Biomed Pharmacother; 2020 May; 125():109844. PubMed ID: 32004973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Conserved Residues and F322 in the Extracellular Vestibule of the Rat P2X7 Receptor in Its Expression, Function and Dye Uptake Ability.
    Rupert M; Bhattacharya A; Stillerova VT; Jindrichova M; Mokdad A; Boué-Grabot E; Zemkova H
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33182845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.